In addition to its widespread neuronal expression, EFN-4::GFP is also expressed in anterior and posterior epidermal cells, including the lateral epidermal cells H0 and QV5, the leading ventral epidermal cells of the anterior, and the posterior three pairs of ventral epidermal cells (P7 - 12). |
|
Expr4682
|
In early embryos EFN-4::GFP is widely expressed in ventral neuroblasts prior to epidermal enclosure (see Expr2300). In contrast, PLX-2 reporters were expressed in a much smaller number of ventral neuroblasts. Following epidermal enclosure PLX-2::GFP reporters were expressed in neurons and in a subset of posterior lateral and ventral epidermal cells; these were identified as the lateral cell QV5 and the ventral epidermal cells P9-12. |
|
|
|
Expr1439
|
During ventral enclosure of the epidermis, VAB-1::GFP was expressed in clusters of cells of the head and tail regions. In the head region, VAB-1::GFP was expressed in clusters of presumptive neuronal cells. Early in enclosure these cells appear to lie beneath the epidermal leading cells; later in enclosure, the VAB-1 expressing cells lie anterior to the leading cells. VAB-1::GFP was not detectably expressed in the epidermal leading cells at any stage during ventral enclosure. In the posterior of the embryo, VAB-1::GFP was expressed in several cells, including QV5 and the ventral hyp7 cells posterior to the rectum; VAB-1::GFP was also expressed in several pharyngeal cells. In late embryogenesis and throughout larval and adult development, VAB-1::GFP was localized to the axons of many neurons throughout the nervous system. Thus, in most stages following gastrulation, VAB-1::GFP is widely expressed in the developing nervous system. During ventral enclosure of the epidermis, VAB-1::GFP was expressed in clusters of cells of the head and tail regions. In the head region, VAB-1::GFP was expressed in clusters of presumptive neuronal cells. Early in enclosure these cells appear to lie beneath the epidermal leading cells; later in enclosure, the VAB-1expressing cells lie anterior to the leading cells. VAB-1::GFP was not detectably expressed in the epidermal leading cells at any stage during ventral enclosure. In the posterior of the embryo, VAB-1::GFP was expressed in several cells, including QV5 and the ventral hyp7 cells posterior to the rectum; VAB-1::GFP was also expressed in several pharyngeal cells. In late embryogenesis and throughout larval and adult development, VAB-1::GFP was localized to the axons of many neurons throughout the nervous system. Thus, in most stages following gastrulation, VAB-1::GFP is widely expressed in the developing nervous system. |
Located at axons of many neurons. |
Other strain-- UL123 |
|
Expr103
|
This strain exhibits strong expression in the embryo. Expression is first seen in the 50-80 cell embryo and extends through to adulthood. It appears that most of the AB cells in the embryo stain, and what appears to be the cells of the C lineage. Some embryos exhibit staining in the two rows of nuclei that are the E lineage. All embryonic staining is very intense, and it spreads to the cytoplasm giving blue embryos, therefore obscuring the DAPI staining, making it difficult to count the number of cells in the embryos as each component begins expressing. This intense staining fades as the embryo ages, sometimes leaving blue comma stage embryos with no distinct nuclei staining. Hypodermal expression is seen in the 3 fold stage of embryogenesis and in young larvae which most probably are C-derived hyp-7 nuclei. Expression weakens as the worm gets older and is much less frequently expressed in adults. Some adults do show staining in the anterior hypodermal nuclei (hyp-3, hyp-4) and in the anterior hypodermal seam cells, also some nuclei stain in the tail. |
|
This information was extracted from published material (Archana Sharma-Oates, Andrew Mounsey and Ian A. Hope). |
|
Expr706
|
NHR-2 is detected in the nuclei of embryos as early as 2-cell stage. The protein is present in every nucleus until the 16-20 cell stage then no longer detected in germline precursor P4 and its sister D but at this point expression in other cells increase. No staining during or just after mitosis. 28-cell stage: Staining in E and MS descendants, variable expression generally weak particularly in E cells. Staining in ABplp and ABpr descendants also variable but can be quite strong. The other 10 AB cells and 4 C cells exhibit reproducible strong expression. 51-cell stage: No expression in descendants of E. Staining in C cells, many AB cells and some MS cells (particularly those in anterior and dorsal positions). As embryogenesis progresses NHR-2 expression is restricted to anterior and dorsal regions of embryo. 250 cell stage: Nuclei staining include (but not limited to) Cp descendants contributing to hyp7 synctium, many but not all AB descendants. NHR-2 last detected in one or a few nuclei in vicinity of excretory cell before expression ceases at early comma stage. |
|
|
|
Expr3279
|
In the embryo, the downstream promoter (ten-1b) is most active in the descendants of the ABp cell and in the hypodermis. The dorsal hypodermal cells and the ventral leader cells were most prominently labeled. During postembryonic development, GFP fluorescence was visible in specialized epithelial cells including the arcade cells of the anterior end and the excretory duct. Ten-1b is also active in a subset of neurons including CAN and HSN neurons as well as neurons of the lumbar and retro-vesicular ganglion and some nerve ring interneurons. In males, GFP fluorescence is also visible in R8 and R9 ray neurons. |
|
|
|
Expr1633
|
First, pKK52 expression begins at the 28-cell stage in all four granddaughters and 16 great-great granddaughters of the MS and AB founder cells, respectively; this expression continues in many, possibly all, of their descendants until around the time of hatching. Second, expression becomes more pronounced in seam cells about 1 hour after their birth. This seam expression remains strong throughout embryonic and larval development, but becomes slightly reduced in adults. Third, robust expression is also seen in several cells in the head region, at least some of which are cells in the nervous system (neurons and/or support cells), beginning at approximately the comma stage and continuing through adulthood. For simplicity, this component of the expression pattern was referred as nervous system expression, although the precise identity of these cells were not determined. |
|
See Expr1633 for pKK52 expression pattern. |
|
Expr1634
|
pKK41 is expressed in the same groups of cells as the elt-5 translational reporter (pKK52), but the relative expression levels are different. Whereas the elt-5 reporter is strongly expressed in both seam cells and the nervous system during the comma through pretzel stages, the elt-6 reporter is strongly expressed only in the nervous system. Only weak expression of the elt-6 reporter is apparent in seam cells and in the AB and MS descendants during embryogenesis, but the seam expression becomes stronger during larval development. Strong expression of the elt-6 reporter in the nervous system continues throughout larval development. |
|
|
|
Expr10292
|
Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/ |
|
|
|
Expr10307
|
Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/ |
|
|
|
Expr10509
|
Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/ |
|
|
|
Expr10422
|
Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/ |
|
|
|
Expr10214
|
Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/ |
|
|
|
Expr10005
|
At the onset of pocket closure, the plx-2 reporter expresses in six blast cells (and sporadically in a seventh) on the surface of the open ventral pocket, five of which, after dividing, form a band of ten PLX-2/plexin expressing plexin band cells that extends across the midline spanning the open pocket. At the onset of pocket closure, the plx-2 reporters express in right and left side analogs of QV5 and P cells P3/4, P5/6, P9/10, P11/12. The reporter also expresses in bridge and scaffold cells, which together comprise a band of PLX-2 and VAB-1 expressing cells that cross the open pocket. Expression in all of these cells continues throughout pocket closure and beyond. Among the P cells, expression is most prominent in P9/10 right (R) and left (L). |
|
|
|
Expr10006
|
At the onset of pocket closure vab-1 reporters expresses in right and left side analogs of V3 (sporadically), V4, QV5, and P9/10. The reporter also expresses in bridge and scaffold cells, which together comprise a band of PLX-2 and VAB-1 expressing cells that cross the open pocket, referred to below as the plexin band. Expression in all of these cells continues throughout pocket closure and beyond. Among the P cells, expression is most prominent in P9/10 right (R) and left (L) for all reporters. |
|
|
|
Expr13282
|
The knockin strain shows significant Msx/vab-15 expression in embryonic AB.p(lr)apapaa, which is the mother cell of Q and V5 neuroblasts. After the division of this mother cell, Msx/vab-15 expression turns off in V5 neuroblasts but is maintained in Q cells until they divide. P-neuroblast expression of Msx/vab-15 starts before hatching, is maintained while P nuclei migrate into the ventral midline in early L1-stage larvae, and shuts down after P neuroblasts divide. |
|