|
|
Expr4434
|
Expressed in socket cells of IL or OLQ. Strongly expressed in OLLL and OLLR neurons. |
|
|
|
Expr3037
|
The 5' untranslated region directed expression to a small subset of sensory cells that are ciliated. GFP signal was observed in the multiple ciliated amphid neurons in the head and both ciliated phasmid neurons (PHA and PHB) in the tail. Expression was also detected in other ciliated sensory neurons, including the inner and outer labial neurons and male tail ray neurons. GFP fluorescence was also detected in the midbody PDE ciliated neuron and PQR ciliated tail neuron. |
|
|
|
Expr3185
|
Expressed in ADF, ADL, ASE, ASG, ASH, ASI, ASJ, ASK, PHA, PHB, URX, labial neurons. |
|
|
|
Expr15558
|
|
|
|
|
Expr15560
|
|
|
|
|
Expr15567
|
|
|
|
|
Expr15571
|
|
|
|
|
Expr15572
|
|
|
|
|
Expr15573
|
|
|
|
|
Expr15579
|
|
|
|
|
Expr15586
|
|
|
|
|
Expr15651
|
|
|
|
|
Expr15652
|
|
|
|
|
Expr15589
|
|
|
|
|
Expr13158
|
|
|
|
|
Expr15591
|
|
|
|
|
Expr13164
|
For lgc-38, all expressing cells shown are observed with the 3.5 kb reporter fusion, except for OLL, which only expresses the 3.9 kb fusion; URA expresses both. |
|
|
|
Expr15598
|
|
|
|
|
Expr15604
|
|
|
|
|
Expr14590
|
Embryonic expression of exc-7 was first observed at the bean stage. By reverse lineaging with use of SIMI-Biocell software, we confirm the identity of one of the expressing cells at this stage as the excretory canal cell. In L1 animals, broad expression in the head, ventral nerve cord (VNC), and tail was observed. In young adults, expression is notably observed in vulva cells. In the nervous system specifically, expression is observed in many neurons throughout the body, but unlike Drosophila Elav, exc-7::gfp it is not panneuronally expressed. We confirmed previously reported expression in cholinergic VNC MNs, but absence of GABAergic VNC MNs, consistent with previous reports (Fujita et al., 1999; Loria et al., 2003) and consistent with exc-7 functioning in cholinergic, but not GABAergic neurons to control alternative splicing (Norris et al., 2014). exc-7::gfp is also expressed in some non-neuronal cell types, including muscle and hypodermis, but not in the gut. A previous report showed that exc-7 is only transiently and weakly expressed in the excretory cell, which, based on exc-7's excretory mutant phenotype, has puzzled researchers (Fujita et al., 2003). We find that the gfp tagged exc-7 locus is strongly and continuously expressed in the excretory canal cell. |
|
|
|
Expr15608
|
|
|
|
|
Expr11375
|
eat-4 is expressed in 78 of the 302 neurons of the adult hermaphrodite, which fall into 38 neuron classes (out of a total of 118 anatomically defined neuron classes in the hermaphrodite). Most of these neurons are either sensory- or interneurons. Only two motorneurons utilize glutamate; both are located in the pharynx. |
|
|
|
Expr15611
|
|
|
Other Strains: OH14290 |
|
Expr14067
|
ASK, ASI, ASJ, 2-3 more neuron pairs, OLL (dim), phasmids?, sometimes PVT, pharynx - a bit mosaic and variable |
|
|
|
Expr10592
|
Transcriptional reporters were expressed in neurons and body wall muscle and were similarly expressed in both males and hermaphrodites. Colocalization with other reporters and anatomical criteria enabled identification of the expressing neurons as the ciliated sensory neurons OLL, PHA and PQR, the nonciliated sensory neurons URY and URX, the touch receptor neurons ALM, PLM, AVM and PVM, the interneurons in the retro-vesicular ganglion RIF and AVF, the command interneurons AVD and PVC, the ring motor neurons RMED and RMEV, and two other neurons tentatively identified as either PVQ or PVW and DB2. No expression was observed in amphid or male-specific neurons. |
|
|
|
Expr1261
|
Expressed in a subset of neurons in the pharynx and in the extrapharyngeal nervous system. Expression was also noticed in intestine cells(int1-int9). In the pharynx, eat-4 was found to be expressed in M3, NSM neurons, and possibly I5, but not in muscle. Clear and consistent eat-4 reporter expression was found in 15 different anatomical types. ADA, ALM, ASH, ASK, AUA, and AVJ or AIN, AVM, FLP, IL1, LUA, OLL, OLQ, PLM, PVD, and PVR. |
|
|
|
Expr2968
|
GFP fluorescence was detected in all ciliated sensory neurons including the amphids, labial neurons, phasmids, and the sensory rays of the male tail. No GFP was evident in other cell types, suggesting that bbs-5 expression is restricted to ciliated cells. |
Analysis of a C. elegans strain expressing a translational bbs-5::GFP transgene revealed that the GFP-tagged BBS-5 protein localizes specifically to the base of cilia in the ciliated head and tail neurons. BBS-5::GFP staining pattern is observed at the base of the cilia in the amphid neurons in the worm head and at the base of the left and right phasmid neurons in the tail. |
|
|
Expr1222
|
In adult animals, GFP signal was found in all body wall muscle cells, in the three pharyngeal cells pm5 and in the anal sphincter muscle. A weak expression was observed in four of the eight vulval muscle cells (vm1) whereas in males, GFP was expressed in diagonal and spicule muscles. GFP was expressed also in three pairs of cephalic sensory neurons located in anterior (two pairs) and dorsal (one pair) head ganglia, respectively. These neurons possessed endings in the labial region and were identified as the outer lateral labial cells (OLL) and the four sensory cephalic neurons CEP (the ventral CEP pair is ventral and anterior to the nerve ring, the dorsal CEP pair is posterior to the nerve ring). During development, GFP was detected in embryos at the 1-1/2-fold stage, in one muscle quadrant. For larval stages, an expression pattern similar to that in adults was observed, but in early L1, a strong signal was detected in the mesodermal M cell in the mid-part of the body. |
|
|
[ser-2::gfp] transcriptional fusion constructs. Ser-2 reporter constructs were generated by using a PCR fusion protocol, using pPD95.75 as a template for green fluorescent protein (gfp). For all gfp fusion primers listed, gfp vector sequence is indicated in lowercase, and gene-specific sequence is indicated in uppercase. [ser-2::gfp] translational fusion. A translational fusion of the whole ser-2 locus to gfp was created by using an in vivo recombination technique. Specifically, two overlapping PCR fragments, one containing the 5' part of a locus, the other containing the remainder of the locus PCR-fused to gfp, were coinjected into the worm. Recombination of these two fragments via the homologous region leads to the expression of a full-length ser-2::gfp fusion. |
Expr2707
|
Expression using the upstream regulatory regions of exon 1bc (ser-2prom2::gfp) is mostly restricted to the AIYL/R, AIZL/R, RID, DVA, BDUL/R, SIADL/R, and SIAVL/R interneurons. Less consistent expression is observed in PVT. In addition, expression is observed in the RMEL/R motor neurons. Outside the nervous system, expression can be observed in the excretory gland cells. No more transcriptional regulatory information is contained within intronic regions by generating a fusion of gfp to the full coding genomic ser-2 locus using an in vivo recombination technique([ser-2::gfp] translational fusion. Transgenic animals expressing such a construct show an expression pattern similar to the one observed with the ser-2prom1::gfp construct. The upstream regulatory region of the third splice form, containing exon 1d(ser-2prom3::gfp), drives expression exclusively in two sensory neuron classes, OLL(L/R) and PVD(L/R). ser-2prom1::gfp is expressed in the AIY interneuron class and a set of unidentified neurons. These neurons were identified as head and tail interneuron classes, namely AVHL/R, AUAL/R, AIYL/R, RICL/R, SABVL/R, RID, RIAL/R, SABD, SDQ, CANL/R, DA9, LUAL/R, ALNL/R, and PVCL/R. In addition to its expression in neurons, ser-2prom1::gfp is also expressed in pharyngeal cells (NSM neurons and pm1/6 muscles) and in head muscles. In males, expression can be observed in posterior dorsal and ventral body wall muscles, the male-specific diagonal muscles, and several posterior neurons likely to be CP neurons. |
|
Other Strain: OH13840 |
|
Expr14090
|
PVQ, OLL, URB, AIY, ADA, BDU |
|