Picture: Fig. 1G, 1H, Fig S1G-L. |
|
Marker30
|
Expressed in CEPsh glia and in sheath and socket glia of inner and outer labial sensilla, and of the deirid. |
|
Picture: Fig 6. |
|
Expr8786
|
Apart from cells in the neuroblast lineage that generate ASE, nhr-67::mCherry was expressed in multiple other neuroblast lineages in the developing embryo. Expression was usually observed in the grandmother or mother of a neuron, but not earlier. Within the ASEL and ASER-generating lineage branches, nhr-67 was expressed in neuroblasts that generate closely or distantly related cousins of ASEL and ASER. For example, the sister neuroblast of the ASE-generating neuroblast creates the AUA and ASJ neurons and it expressed nhr-67. The cousin of the ASE-mother cell generates the AWB and ADF sensory neurons. nhr-67 was expressed in these cells. In late stage embryos, a few other, postmitotic neurons started to express nhr-67. Embryonic nhr-67 expression was not restricted to the nervous system, but was observed in a small subset of mesodermal and hypodermal cells. No expression was detected in endodermal cells or the germ line. nhr-67 was expressed in the excretory canal cell. Postembryonically, nhr-67 expression persisted only in a few neurons in the head ganglia until the first larval stage and faded shortly thereafter in most, but not all, of these neurons, with expression persisting through adulthood only in the CEPD/V, RMED/V, AVL and RIS neurons. During mid-larval development, nhr-67 was transiently and dynamically expressed in the AC cells of the vulva. Expression was also found in the VU cells and somatic gonad, but not in vulA, vulB or vulC. Within the ASEL/R generating lineages, nhr-67::mCherry was first observed in the grandmother cells of ASEL and ASER. Transgenic animals that co-express a functional nhr-67::mCherry reporter and a functional che-1::yfp reporter revealed that nhr-67 precedes che-1 expression. nhr-67 expression was maintained in the ASEL and ASER neurons until the first larval stage after which it became undetectable, whereas che-1 expression was maintained throughout the life of the animal. In spite of its genetically deduced role in asymmetric gene expression in ASEL and ASER, nhr-67 expression is bilaterally symmetric in ASEL and ASER. |
|
Picture: N.A. |
|
Expr8681
|
Arcade cells are seen to express inx-13 at high levels starting around two-fold stage continuing throughout development and adulthood. inx-13 is expressed in the hypodermal cells of the animal in postembryonic stages. Expression in the alimentary canal: Strong and consistent expression in M1, M2. Weak or rare expression in intestine, rectal epithelial cells. Expression in the nervous system: Amsh, CEPsh, CEPso, ILsh, ILso, OLsh, OLso, Phsh, CAN, DVA, DVB, DVC, LUA, PHA, PHB, PLN, PVC, PVQ, PVR, M1, M2. Expression in the reproductive system: In adult stage, expressed in spermatheca, sp-ut valve. |
|
No detailed description on cellular expression pattern at hermaphrodites. |
|
Expr1300
|
LIN-29 accumulates in B cell progeny. In contrast to the LIN-29 accumulation pattern observed in wild-type hermaphrodites, LIN-29 is not detectable in the F, U, Y, or M blast cell nuclei, or in their progeny, in males. LIN-29 is detected in the progeny of B. LIN-29 is first detectable in B cell progeny during the L3 stage. Although all B.a and B.p progeny accumulate LIN-29, the LIN-29 accumulation signals appear weaker and transient in B.p progeny. The identification of these LIN-29-accumulating cells as B progeny is based on their size, shape, and relative position within the male tail and is further supported by laser microsurgery experiments and the examination of LIN-29-accumulation patterns in a mutant with defects in B cell specification. Elimination of the B cell by laser micro-surgery during the L1 stage reduced the number of LIN-29-accumulating nuclei in the male tail by 1015. LIN-29 appears to persist in B.a progeny in the adult stage. LIN-29 accumulates in the linker cell. The first male-specific LIN-29 accumulation is detected in the nucleus of the linker cell (LC) positioned at the tip of the growing end of the gonad. LIN-29 accumulates in the LC during the L3 stage, after the gonad arm has completed the 180 turn. LIN-29 remains detectable until the late L4 stage when its disappearance is presumably due to LC destruction. LIN-29 accumulates in the male tail seam. LIN-29 accumulates in the lateral body seam cell nuclei and in the SET nuclei in L4 stage wild-type males. LIN-29 accumulates in ventral cord nuclei. During the late L3 stage, five to seven nuclei that belong to the preanal ganglion accumulate LIN-29. Four preanal ganglion nuclei accumulates LIN-29 and were identified by position as the CA9, CP9, AS11, and VA11 neurons which are descended from P11.a. LIN-29 accumulation in the preanal ganglion cluster persists through adulthood. In late L4 stage and adult males, additional ventral cord nuclei anterior to the preanal ganglion accumulate LIN-29. The accumulation of LIN-29 in ventral cord neurons is not observed in hermaphrodites. Also in contrast to hermaphrodites, the ventral hypodermal nuclei positioned within the ventral cord do not contain detectable levels of LIN-29 in adult males. |
nuclei |