WormMine

WS294

Intermine data mining platform for C. elegans and related nematodes

Life Stage :

Definition  The time period encompassing the 171st minute post first cleavage at 20 Centigrade with respect to Sulston's lineage tree. Primary Identifier  WBls:0000282
Public Name  171 min post first-cleavage Ce

0 Anatomy Terms

2 Contained In

Remark Definition Other Name Public Name Primary Identifier
  The C. elegans life stage spanning 100-290min after first cleavage at 20 Centigrade. Proliferate from 28 cells to 421 cells. Referring to the whole period of gastrulation. gastrulating embryo Ce WBls:0000010
  A C. elegans life stage that occurs during the gastrulating embryo life stage C. elegans life stage occurring during gastrulation WBls:0000814

0 Expression Clusters

200 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr10470 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10426 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10372 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10373 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10478 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10317 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10304 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10489 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10267 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10349 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10407 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10281 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10347 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10348 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10221 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10222 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10479 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10223 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10480 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10224 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10481 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10482 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10292 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10229 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10293 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10421 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10430 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10369 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10307 Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  
    Expr10438 Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/  

1 Followed By

Remark Definition Other Name Public Name Primary Identifier
  The time period encompassing the 172nd minute post first cleavage at 20 Centigrade with respect to Sulston's lineage tree. 172 min post first-cleavage Ce WBls:0000283

1 Preceded By

Remark Definition Other Name Public Name Primary Identifier
  The time period encompassing the 170th minute post first cleavage at 20 Centigrade with respect to Sulston's lineage tree. 170 min post first-cleavage Ce WBls:0000281

0 Sub Stages