WormMine

WS295

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00011246 Gene Name  R11D1.7
Sequence Name  ? R11D1.7 Organism  Caenorhabditis elegans
Automated Description  Predicted to be located in membrane. Biotype  SO:0001217
Genetic Position  Length (nt)  ? 2871
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00011246

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:R11D1.7.1 R11D1.7.1 1587   V: 12720013-12722883
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:R11D1.7 R11D1.7 1386   V: 12720058-12720189

2 RNAi Result

WormBase ID
WBRNAi00051782
WBRNAi00017748

39 Allele

Public Name
gk963271
gk963301
gk964458
gk964459
gk963618
gk963694
gk963693
WBVar01868290
WBVar01868291
WBVar01975141
WBVar01590351
gk576809
gk463645
gk359285
gk872682
gk555836
gk845720
gk745998
gk665819
gk736778
gk608826
gk921024
gk767732
gk862886
gk887386
ttTi23492
gk250169
gk250170
WBVar01661229
WBVar00010685

1 Chromosome

WormBase ID Organism Length (nt)
V Caenorhabditis elegans 20924180  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00011246 12720013 12722883 1

3 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrV_12722884..12724557   1674 V: 12722884-12724557 Caenorhabditis elegans

46 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Transcripts that showed significantly increased expression in L1 neural cells comparing to in adult neural cells. DESeq2 (v1.18.1) fold change > 2, P-adj<0.05, using BenjaminiHochberg correction. WBPaper00060811:L1_vs_adult_upregulated_neural
  Transcripts of coding genes that showed significantly decreased expression in muscle. DESeq2 (version 1.24.0). Transcripts with a false-discovery rate adjusted p-value less than 0.05 were considered significantly differentially expressed. WBPaper00062325:muscle_depleted_coding-RNA
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L1-larva_expressed
adult vs dauer larva Transcripts that showed differential expression in adult vs dauer lava in N2 animals at 20C. N.A. WBPaper00050488:adult_vs_dauer_regulated_N2_20C
  mRNAs that showed decreased expression in 1 cell mebryo comparing to in oocyte, according to RNAseq analysis. Gaussian error propagation. As cutoff for the up-regulated genes authors used log2 fold change > 1 and P < 0.05 and as cutoff for the down-regulated genes authors used log2 fold change < -1 and P < 0.05. WBPaper00045420:fertilization_downregulated_transcript
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:AVE-neuron_L1-larva_expressed
Osmotic stress Transcripts that showed significantly altered expression with 500 mM salt (NaCl) vs 100 mM salt when food was present DESeq(version 1.10.1), FDR < 0.05. WBPaper00050726:OsmoticStress_regulated_Food
  Neuronally enriched transcripts according to a comparison of neuronal nuclei IP samples to total nuclei using isolation of nuclei from tagged specific cell types (INTACT) technology. DESEQ2, fold change > 2 and FDR < 0.01. WBPaper00062103:neuron_enriched
  Transcripts that showed significantly increased expression in ogt-1(ok1474) neuronal cells isolated by FACs comparing to in FACs isolated neuronal cells from wild type. DESeq2, fold change > 2, FDR < 0.05. WBPaper00066485:ogt-1(ok1474)_upregulated_neuron
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:GABAergic-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 0hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:germline-precursors_blastula-embryo_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:glr-1(+)-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:intestine_L2-larva_expressed
  Transcripts that showed significantly increased expression in hda-2(ok1479) comparing to in N2 animals. DESeq2 (version 1.28.1), FDR < 0.01, fold change > 2. WBPaper00062159:hda-2(ok1479)_upregulated
20C vs 25C Transcripts that showed differential expression in 20C vs 25C in mir-34(OverExpression) animals at adult stage. N.A. WBPaper00050488:20C_vs_25C_regulated_mir-34(OverExpression)_adult
  Germline-intrinsic transcripts. Comparisons were made between genotypes by subtracting the mean log value of one ratio from another, and the significance of the difference was evaluated using Student t-test for two populations. For the fem-3(gf) versus fem-1(lf) direct comparison, authors performed the same analysis, except they used a Students t-test for one population. Author chose a combination of a twofold difference with a t value exceeding 99% confidence (P < 0.01), because these criteria allowed the inclusion of essentially all genes that had previously been identified as germline-enriched in a wt/glp-4 hermaphrodite comparison. Additionally, requiring a twofold difference reduced false positives, as the number of genes with two-fold difference and a P<0.01 only included ~100 genes more than with P < 0.001, and almost all genes showed germline expression by in situ hybridization. [cgc6390]:intrinsic
Bacteria infection: Serratia marcescens Genes with increased expression after 24 hours of infection by S.marcescens Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:S.marcescens_24hr_upregulated_TilingArray
  Genes that showed expression levels higher than the corresponding reference sample (Young adult all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:CEP-sheath-cells_Day1-adult_expressed
  Transcripts that showed significantly decreased expression in whole animal day 1 N2 adults comparing to in whole animal day 8 N2 adults. DESeq2, FDR < 0.05, fold change > 2. WBPaper00066978:Day1Adult_vs_Day8Adult_downregulated_neuron
  Transcripts that showed significantly increased expression in smn-1(ok355) heterozygots using balancer hT2 comparing to in N2. DESeq v1.14.0, log2FC > 1, q <= 0.05. WBPaper00056809:smn-1(ok355)_upregulated
  Embryonic Pan-neural Enriched Genes. A two-class unpaired analysis of the data was performed to identify genes that differ by >= 1.5-fold from the reference at a FDR of <1% for the larval pan-neural, embryonic pan-neural, and larval A-class motor neuron datasets. WBPaper00030839:Embryo_Pan_Neuronal
  Genes with expression level regulated by genotype (N2 vs CB4856) at Old adults stage (214 hours at 24 centigrade). Authors permuted transcript values and used a genome-wide threshold of log10 P-value = 2, which resembles a false discovery rate (FDR) of 0.0136. WBPaper00040858:eQTL_regulated_old
  Genes enriched in intestine. To identify genes that are significantly enriched by mRNA tagging, we first normalized the total amount of Cy3 and Cy5 signal to each other in each hybridization. We measured the ratio of the signals from the co-immunoprecipitated mRNA (Cy5) to total RNA in the cell extract (Cy3), and calculated the percentile rank for each gene relative to all genes in each hybridization. The mean percentile rank was determined from eight repeats of the mRNA-tagging experiment. Student's t-test was used to determine which genes showed a mean enrichment significantly greater than the median enrichment for all genes (P<0.001). WBPaper00026980:intestine_enriched
  mRNAs that were significantly enriched in the AIN-1 immunoprecipitation samples, compared to the control total mRNAs in the input extracts (p < 0.01). Signals from replicates of total worm lysates from wt and strains containing the ain-2::gfp or the ain-2 promoter::gfp transgene were mean normalized and averaged respectively to generate standard profiles of gene expression in these worm strains. Authors then calculated the ratio of signal of each gene from each IP sample to the standard gene expression profile of the corresponding worm strain. Based on this ratio, a percentile rank of each gene relative to all genes in each IP replicate was calculated. The percentile ranks in the three replicates of each IP were averaged. Student t test was utilized to determine if the average percentile ranks of enrichment of individual genes were significantly higher (p value) than the mean enrichment of all genes in the IP samples. To determine the AIN-1 or AIN-2 associated genes, we used the following criteria: (1) average percentile ranks of enrichment is greater than the mean enrichment of all genes in AIN-1 or AIN-2 IP with p < 0.01; (2) average signal in AIN-1 or AIN-2 IP replicates is greater than the background signal (including 2X standard deviation (SD)) (Background signal and SD were calculated based on signals from empty spots on each microarray); (3) criteria 1 is not be satisfied for the same gene in the corresponding control IP. WBPaper00031252:AIN-1_IP_enriched
  mRNAs that were significantly enriched in the AIN-2 immunoprecipitation samples, compared to the control total mRNAs in the input extracts (p < 0.01). Signals from replicates of total worm lysates from wt and strains containing the ain-2::gfp or the ain-2 promoter::gfp transgene were mean normalized and averaged respectively to generate standard profiles of gene expression in these worm strains. Authors then calculated the ratio of signal of each gene from each IP sample to the standard gene expression profile of the corresponding worm strain. Based on this ratio, a percentile rank of each gene relative to all genes in each IP replicate was calculated. The percentile ranks in the three replicates of each IP were averaged. Student t test was utilized to determine if the average percentile ranks of enrichment of individual genes were significantly higher (p value) than the mean enrichment of all genes in the IP samples. To determine the AIN-1 or AIN-2 associated genes, we used the following criteria: (1) average percentile ranks of enrichment is greater than the mean enrichment of all genes in AIN-1 or AIN-2 IP with p < 0.01; (2) average signal in AIN-1 or AIN-2 IP replicates is greater than the background signal (including 2X standard deviation (SD)) (Background signal and SD were calculated based on signals from empty spots on each microarray); (3) criteria 1 is not be satisfied for the same gene in the corresponding control IP. WBPaper00031252:AIN-2_IP_enriched
  Transcripts enriched in invading anchor cells comparing to in whole animal. DESeq2v.1.30.1. fold change >= 2, FDR < 0.05 WBPaper00065258:anchor-cell_enriched
  Transcripts that showed significantly increased expression in let-418(n3536);dcp-66(RNAi) comparing to control. DESeq, fold change > 2. WBPaper00062672:let-418(n3536)dcp-66(RNAi)_upregulated
  miRNA targets that are significantly enriched at L1 larva stage. To generate a global view of the dynamics of miRNA-mediated regulation of gene expression during C. elegans development, authors analyzed the mRNAs in the AIN-2-GFP IP results from five developmental stages. The magnitude of the combined interaction of miRNAs with a given target mRNA was assessed by measuring the fold enrichment of that mRNA in AIN-2 IP samples, relative to the abundance of the mRNA in the corresponding total lysate. Because this enrichment in the IP sample versus total lysate directly reflects the miRISC-associated fraction of a given mRNA, high enrichment indicates the likelihood of strong miRNA-mediated regulation of the mRNA, whereas low or negative enrichment indicates the likelihood of weak or absent miRNA regulation of the mRNA. It is also possible that poor enrichment could reflect interactions that occur only in a rare subset of cells at any given stage of development. Transcripts that were significantly enriched (0 For each transcript represented on the microarray, authors first used all 18 data points from all of the 18 microarrays to calculate its average in-stage standard deviation as SD=SQRT((i=1-K (ni-1)SDi2)/(N-K)), degree of freedom (df)=N-K, where K is the number of developmental stages in which the given transcript had at least one non-missing log2(IP/Total) value; ni is the number of non-missing values in stage i among the K stages; SDi is the standard deviation of the log2(IP/Total) values from all the replicates of stage i; N is the total number of non-missing values for this transcript at all stages. A transcript must have at least one stage with at least two non-missing values to be testable. All of the non-missing values of a transcript at each stage were averaged to generate the stage-average values (Mi for stage i). The standard error of Mi was calculated as SEi=SD/SQRT(ni) (df=N-K), where SD is the average in-stage standard deviation calculated above and ni is the number of non-missing values at stage i, as explained above. Based on the SEi, a one-tailed Students t-test was used to calculate the P-value of enrichment in stage i (Test if Mi>0). The T statistic was constructed as T=Mi/SEi (df=N-K). Mi>0 and enrichment P<0.001 were used as the threshold of enrichment for each stage. WBPaper00035084:L1_enriched_AIN-2_IP

4 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr1155446 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr2005585 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1027763 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr2023803 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  

1 GO Annotation

Annotation Extension Qualifier
  located_in

0 Homologues

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00011246 12720013 12722883 1

1 Ontology Annotations

Annotation Extension Qualifier
  located_in

0 Regulates Expr Cluster

1 Sequence

Length
2871

1 Sequence Ontology Term

Identifier Name Description
gene  

0 Strains

1 Upstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrV_12718723..12720012   1290 V: 12718723-12720012 Caenorhabditis elegans