WormMine

WS297

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00010389 Gene Name  srz-31
Sequence Name  ? H12I19.2 Organism  Caenorhabditis elegans
Automated Description  Predicted to be located in membrane. Biotype  SO:0001217
Genetic Position  IV :11.4841 ±0.000252 Length (nt)  ? 2932
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00010389

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:H12I19.2.1 H12I19.2.1 975   IV: 14137363-14140294
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:H12I19.2 H12I19.2 975   IV: 14137363-14137527

2 RNAi Result

WormBase ID
WBRNAi00049387
WBRNAi00016255

36 Allele

Public Name
gk964078
gk963546
gk963547
gk964500
gk962765
gk962794
WBVar02123254
gk964525
gk961910
gk547585
gk908680
gk361570
gk540205
gk532859
gk317714
gk687170
gk433288
gk547586
gk785538
gk801962
gk763299
WBVar02021702
gk217730
WBVar02021700
WBVar02021701
h5448
WBVar00194614
gk956709
WBVar01732202
WBVar01797042

1 Chromosome

WormBase ID Organism Length (nt)
IV Caenorhabditis elegans 17493829  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00010389 14137363 14140294 1

3 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrIV_14140295..14140407   113 IV: 14140295-14140407 Caenorhabditis elegans

19 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L1-larva_expressed
  mRNAs that showed decreased expression in 1 cell mebryo comparing to in oocyte, according to RNAseq analysis. Gaussian error propagation. As cutoff for the up-regulated genes authors used log2 fold change > 1 and P < 0.05 and as cutoff for the down-regulated genes authors used log2 fold change < -1 and P < 0.05. WBPaper00045420:fertilization_downregulated_transcript
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:AVE-neuron_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:bodywall-muscle_L1-larva_expressed
Bacteria infection: Enterococcus faecalis Genes with increased expression after 24 hours of infection by E.faecalis Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:E.faecalis_24hr_upregulated_TilingArray
  Genes with expression level regulated by genotype (N2 vs CB4856) at old adults stage (214 hours at 24 centigrade). For model 2, authors used 100 permutations to estimate the FDR threshold. Per permutation, genotypes and ages were independently randomly distributed, keeping the among-gene structure intact. Then for each spot (23,232) on the array, model 2 was tested. The obtained P-values were used to estimate a threshold for each of the explanatory factors. Authors also used a genome-wide threshold of -log10 P-value = 2, which resembles an FDR of 0.072 and 0.060 for marker and the interaction age-marker for the developing worms and FDR of 0.050 and 0.065 for marker and age-marker for the aging worms. For the physiological age effect, authors used a log10 P-value = 8 in developing worms (0.012 FDR) and -log10 P-value = 6 (0.032 FDR). WBPaper00040858:eQTL_regulated_aging
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 0hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:germline-precursors_blastula-embryo_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:glr-1(+)-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:intestine_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L1-larva_expressed
  Genes significantly enriched in NSM neurons (isolated by FACS) versus the reference, according to tiling array analysis towards total RNA. A linear model and moderated t-statistic were used to determine differentially expressed genes as implemented by the limma package (v3.21.4). Enriched list contains only genes significantly enriched in the NSM neurons versus the reference <=1.5X and <= 5% FDR. WBPaper00045974:NSM_enriched_totalRNA_tiling
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:hypodermis_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:A-class-motor-neurons_L1-larva_expressed
Bacteria infection: Photorhabdus luminescens Genes with increased expression after 24 hours of infection by P.lumniescens Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:P.lumniescens_24hr_upregulated_TilingArray
  Transcripts that showed significantly decreased expression in ogt-1(ok1474) neuronal cells isolated by FACs comparing to in FACs isolated neuronal cells from wild type. DESeq2, fold change > 2, FDR < 0.05. WBPaper00066485:ogt-1(ok1474)_downregulated_neuron
  Transcripts that showed significantly increased expression in drh-3(rrr2) comparing to in N2. edgeR, log2 fold change > 2 or < -2. WBPaper00053888:drh-3(rrr2)_upregulated
  Coexpression clique No. 282, srj-21-srh-32, on the genome-wide coexpression clique map for the nematode GPL200 platform. All available microarray datasets for the GPL200 platform (Affymetrix C. elegans Genome Array) were obtained from the GEO repository. This included 2243 individual microarray experiments. These were normalized against each other with the software RMAexpress (Bolstad, 2014). Based on these normalized values, Pearsons correlation coefficients were obtained for each probe-probe pair of the 22,620 probes represented on this array type. The resulting list of correlation coefficients was then ranked to generate the ranked coexpression database with information on each probe represented on the GPL200 platform. WBPaper00061527:srj-21-srh-32

4 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr2035053 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr2016894 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1153121 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr1015136 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  

1 GO Annotation

Annotation Extension Qualifier
  located_in

0 Homologues

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00010389 14137363 14140294 1

1 Ontology Annotations

Annotation Extension Qualifier
  located_in

0 Regulates Expr Cluster

1 Sequence

Length
2932

1 Sequence Ontology Term

Identifier Name Description
gene  

1 Strains

WormBase ID
WBStrain00062380

1 Upstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrIV_14136770..14137362   593 IV: 14136770-14137362 Caenorhabditis elegans