WormMine

WS295

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00016222 Gene Name  C29F9.8
Sequence Name  ? C29F9.8 Organism  Caenorhabditis elegans
Automated Description  Predicted to enable G protein-coupled peptide receptor activity. Predicted to be involved in G protein-coupled receptor signaling pathway. Predicted to be located in membrane. Biotype  SO:0001217
Genetic Position  Length (nt)  ? 336
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00016222

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:C29F9.8.1 C29F9.8.1 237   III: 96783-97118
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:C29F9.8 C29F9.8 237   III: 96783-96869

10 RNAi Result

WormBase ID
WBRNAi00041499
WBRNAi00041500
WBRNAi00041501
WBRNAi00011359
WBRNAi00071792
WBRNAi00006501
WBRNAi00006570
WBRNAi00071244
WBRNAi00024674
WBRNAi00027197

22 Allele

Public Name
gk962532
gk964281
WBVar02122373
WBVar02124464
WBVar01697943
WBVar01697944
WBVar01697940
WBVar01697941
WBVar01697942
WBVar02121153
h4245
gk963331
gk963789
gk780795
WBVar02106685
WBVar00558513
gk5294
WBVar00026413
WBVar02101104
WBVar01912442
WBVar00026418
WBVar00026423

1 Chromosome

WormBase ID Organism Length (nt)
III Caenorhabditis elegans 13783801  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00016222 96783 97118 -1

3 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrIII_94810..96782   1973 III: 94810-96782 Caenorhabditis elegans

34 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:bodywall-muscle_L1-larva_expressed
  Coexpression clique No. 203, sre-33-ZK1025.1_8337, on the genome-wide coexpression clique map for the nematode GPL200 platform. All available microarray datasets for the GPL200 platform (Affymetrix C. elegans Genome Array) were obtained from the GEO repository. This included 2243 individual microarray experiments. These were normalized against each other with the software RMAexpress (Bolstad, 2014). Based on these normalized values, Pearsons correlation coefficients were obtained for each probe-probe pair of the 22,620 probes represented on this array type. The resulting list of correlation coefficients was then ranked to generate the ranked coexpression database with information on each probe represented on the GPL200 platform. WBPaper00061527:sre-33-ZK1025.1_8337
  Transcripts expressed in intestine, according to PAT-Seq analysis using Pges-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:intestine_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:A-class-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L1-larva_expressed
  Genes significantly enriched in NSM neurons (isolated by FACS) versus the reference, according to tiling array analysis towards total RNA. A linear model and moderated t-statistic were used to determine differentially expressed genes as implemented by the limma package (v3.21.4). Enriched list contains only genes significantly enriched in the NSM neurons versus the reference <=1.5X and <= 5% FDR. WBPaper00045974:NSM_enriched_totalRNA_tiling
  Genes found to be regulated by low-copy overexpression of sir-2.1 with p < 0.014. N.A. WBPaper00026929:sir-2.1_overexpression_regulated
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:hypodermis_L1-larva_expressed
  Germline-intrinsic transcripts. Comparisons were made between genotypes by subtracting the mean log value of one ratio from another, and the significance of the difference was evaluated using Student t-test for two populations. For the fem-3(gf) versus fem-1(lf) direct comparison, authors performed the same analysis, except they used a Students t-test for one population. Author chose a combination of a twofold difference with a t value exceeding 99% confidence (P < 0.01), because these criteria allowed the inclusion of essentially all genes that had previously been identified as germline-enriched in a wt/glp-4 hermaphrodite comparison. Additionally, requiring a twofold difference reduced false positives, as the number of genes with two-fold difference and a P<0.01 only included ~100 genes more than with P < 0.001, and almost all genes showed germline expression by in situ hybridization. [cgc6390]:intrinsic
  Transcripts down regulated in hpl-2(tm1489) embryo comparing to N2 in tiling array analysis. Oligos from the tiling array were mapped to chromosome coordinates of the exons from Wormbase WS180. Any oligo that mapped to a gene on both the Watson and Crick strands was excluded. The remaining oligos were then grouped together (perfect match and mismatch) into probe sets and written out into an Affymetrix CDF file. The CDF file was converted into an R-package and loaded into R. The expression values were calculated using the justRMA function from Bioconductor. This used a Benjamini and Hochberg false discovery rate correction. WBPaper00040560:hpl-2_embryo_downregulated
  Transcripts unqiuely expressed in intestine, according to PAT-Seq analysis using Pges-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:intestine_enriched
  Genes that showed expression levels higher than the corresponding reference sample (Young adult all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:CEP-sheath-cells_Day1-adult_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:intestine_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:pharyngeal-muscle_L1-larva_expressed
  Transcripts that showed significantly decreased expression in 100-cell stage embryo of let-418(RNAi) animals, comparing to in control RNAi (with gfp control vector) animals. DESeq and EdgeR were used. A threshold of 1.5 log2 fold change and a p value <10 % were applied. let-418: wild-type; let-418(RNAi)-treated embryos; chd-3: chd-3(eh4);controlGFP(RNAi)-treated embryos; chd-3_let-418: chd-3(eh4); let-418(RNAi)-treated embryos. All fold changes are calculated versus wild-type;control(RNAi)-treated embryos. 1h and 3h correspond to the 24- and 100-cell stages, respectively. WBPaper00050163:let-418(RNAi)_downregulated_100-cell-embryo
  Transcripts that showed significantly increased expression in daf-2(e1370) neurons comparing to in N2 neurons at day 8adult stage. DESeq2, FDR < 0.05, fold change > 2. WBPaper00066978:daf-2(e1370)_upregulated_neuron
  Transcripts that showed significantly increased expression in daf-16(mu86);daf-2(e1370) neurons comparing to in daf-2(e1370) neurons at day 8adult stage. DESeq2, FDR < 0.05, fold change > 2. WBPaper00066978:daf-16(mu86)_upregulated_neuron
Fungi infection: Drechmeria coniospora. 24 hours of infection. Genes that showed increased expression after 24 hours of infection by fungi Drechmeria coniospora. Differentially regulated genes based on fold change, corresponding to the uppermost 18.75th percentile of datasets formed using genes with normalized, expression ratios (infected/control) >1.01 or <0.99 in at least ten out of fourteen arrays are shown. WBPaper00032031:DConiospora_upregulated_OligoArray_24h
  Significantly downregulated genes from cyc-1(RNAi) microarrays using SAM algorithm with an FDR < 0.1 from adult-only chips. SAM algorithm with an FDR < 0.1. WBPaper00033065:cyc-1(RNAi)_downregulated
  Genes from N2 animals with significantly increased expression after 72 hours of treatment on growth media with 10uM rapamycin in 2% DMSO. Analysis of gene expression data was carried out with the Affymetrix Transcriptome Analysis Console. Data preprocessing (using RMA normalization) and QC metrics were performed using Affymetrix Expression Console TM and manually inspected afterwards. Expression analysis was carried out for each two pairwise conditions. FDR statistical correction for multiple testing resulted in a slightly lower number of DEGs in most cases. P-value < 0.05 and fold change > 2.0 were used to determine differentially expressed genes. WBPaper00048989:N2_rapamycin_upregulated
  Genes found to be regulated in daf-16(mgDf50) by resveratrol treatment with p < 0.01. N.A. WBPaper00026929:Resveratrol_regulated_daf-16
  Genes with expression level regulated by genotype (N2 vs CB4856) at Old adults stage (214 hours at 24 centigrade). Authors permuted transcript values and used a genome-wide threshold of log10 P-value = 2, which resembles a false discovery rate (FDR) of 0.0136. WBPaper00040858:eQTL_regulated_old
  mRNAs that were significantly enriched in the AIN-1 immunoprecipitation samples, compared to the control total mRNAs in the input extracts (p < 0.01). Signals from replicates of total worm lysates from wt and strains containing the ain-2::gfp or the ain-2 promoter::gfp transgene were mean normalized and averaged respectively to generate standard profiles of gene expression in these worm strains. Authors then calculated the ratio of signal of each gene from each IP sample to the standard gene expression profile of the corresponding worm strain. Based on this ratio, a percentile rank of each gene relative to all genes in each IP replicate was calculated. The percentile ranks in the three replicates of each IP were averaged. Student t test was utilized to determine if the average percentile ranks of enrichment of individual genes were significantly higher (p value) than the mean enrichment of all genes in the IP samples. To determine the AIN-1 or AIN-2 associated genes, we used the following criteria: (1) average percentile ranks of enrichment is greater than the mean enrichment of all genes in AIN-1 or AIN-2 IP with p < 0.01; (2) average signal in AIN-1 or AIN-2 IP replicates is greater than the background signal (including 2X standard deviation (SD)) (Background signal and SD were calculated based on signals from empty spots on each microarray); (3) criteria 1 is not be satisfied for the same gene in the corresponding control IP. WBPaper00031252:AIN-1_IP_enriched
  Genome-wide analysis of developmental and sex-regulated gene expression profile. self-organizing map cgc4489_group_9
  mRNAs that were significantly enriched in the AIN-2 immunoprecipitation samples, compared to the control total mRNAs in the input extracts (p < 0.01). Signals from replicates of total worm lysates from wt and strains containing the ain-2::gfp or the ain-2 promoter::gfp transgene were mean normalized and averaged respectively to generate standard profiles of gene expression in these worm strains. Authors then calculated the ratio of signal of each gene from each IP sample to the standard gene expression profile of the corresponding worm strain. Based on this ratio, a percentile rank of each gene relative to all genes in each IP replicate was calculated. The percentile ranks in the three replicates of each IP were averaged. Student t test was utilized to determine if the average percentile ranks of enrichment of individual genes were significantly higher (p value) than the mean enrichment of all genes in the IP samples. To determine the AIN-1 or AIN-2 associated genes, we used the following criteria: (1) average percentile ranks of enrichment is greater than the mean enrichment of all genes in AIN-1 or AIN-2 IP with p < 0.01; (2) average signal in AIN-1 or AIN-2 IP replicates is greater than the background signal (including 2X standard deviation (SD)) (Background signal and SD were calculated based on signals from empty spots on each microarray); (3) criteria 1 is not be satisfied for the same gene in the corresponding control IP. WBPaper00031252:AIN-2_IP_enriched
  Transcripts that showed significantly decreased expression in drh-3(rrr2) comparing to in N2. edgeR, log2 fold change > 2 or < -2. WBPaper00053888:drh-3(rrr2)_downregulated
Bacteria infection: Serratia marcescens Genes with decreased expression after 24 hours of infection by S.marcescens Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:S.marcescens_24hr_downregulated_TilingArray
  Genes that showed significantly increased expression level in rsr-2(RNAi) animals comparing to in gfp(RNAi) control. Fold change > 1.2 or < 0.8. WBPaper00042477:rsr-2(RNAi)_upregulated_TilingArray
  Potental DAF-12 target genes identified by ChIP-chip analysis performed on strain ALF4 [daf-12 Affymetrix TAS software that computed for each probe estimates of fold enrichment (in linear scale) over hybridization with input DNA. At the same time, TAS calculated for each probe a p-value by applying a Wilcoxon signed rank test. A threshold of 2.5 was selected, which corresponds to probe intensities approximately 2.5 times stronger on the ChIP array than on the Input array. Additional TAS threshold parameters were MinRun=180 bp, MaxGap=300 bp. TAS analysis showed that the selected threshold of 2.5 corresponds approximately to a p-value of 0.01. WBPaper00040221:DAF-12_target_ALF4

3 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr1145525 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr1018553 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr2019455 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  

3 GO Annotation

Annotation Extension Qualifier
  located_in
  involved_in
  enables

0 Homologues

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00016222 96783 97118 -1

3 Ontology Annotations

Annotation Extension Qualifier
  located_in
  involved_in
  enables

0 Regulates Expr Cluster

1 Sequence

Length
336

1 Sequence Ontology Term

Identifier Name Description
gene  

1 Strains

WormBase ID
WBStrain00047585

1 Upstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrIII_97119..98397   1279 III: 97119-98397 Caenorhabditis elegans