WormMine

WS295

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00021902 Gene Name  oxy-4
Sequence Name  ? Y54H5A.4 Organism  Caenorhabditis elegans
Automated Description  Predicted to enable 4 iron, 4 sulfur cluster binding activity and metal ion binding activity. Predicted to be involved in iron-sulfur cluster assembly. Predicted to be part of cytosolic [4Fe-4S] assembly targeting complex. Is an ortholog of human CIAO3 (cytosolic iron-sulfur assembly component 3). Biotype  SO:0001217
Genetic Position  III :-2.05115 ±0.001553 Length (nt)  ? 3313
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00021902

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:Y54H5A.4.1 Y54H5A.4.1 1451   III: 5155462-5158774
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:Y54H5A.4 Y54H5A.4 1374   III: 5155532-5155919

6 RNAi Result

WormBase ID
WBRNAi00078165
WBRNAi00057482
WBRNAi00057483
WBRNAi00057492
WBRNAi00007085
WBRNAi00033620

37 Allele

Public Name
qa5001
WBVar01330381
ttTi55477
WBVar01445624
WBVar01445622
WBVar00056116
WBVar01445621
ttTi55489
WBVar01445620
ttTi23899
WBVar01566395
gk690357
gk416595
gk517340
gk813987
gk742789
gk638680
gk405966
gk578253
gk437696
gk813473
gk545228
gk874664
gk685113
gk338025
gk426010
gk452106
gk728996
gk701758
WBVar00056126

1 Chromosome

WormBase ID Organism Length (nt)
III Caenorhabditis elegans 13783801  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00021902 5155462 5158774 -1

4 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  
Panther orthologue and paralogue predictions  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrIII_5155437..5155461   25 III: 5155437-5155461 Caenorhabditis elegans

74 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Transcripts expressed in neuronal cells, by analyzingfluorescence-activated cell sorted (FACS) neurons. DESeq. False discovry rate (FDR) < 0.1. WBPaper00048988:neuron_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L1-larva_expressed
adult vs dauer larva Transcripts that showed differential expression in adult vs dauer lava in N2 animals at 20C. N.A. WBPaper00050488:adult_vs_dauer_regulated_N2_20C
  Transcripts expressed in body muscle, according to PAT-Seq analysis using Pmyo-3-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:body-muscle_expressed
  Transcripts expressed in GABAergic neuron, according to PAT-Seq analysis using Punc-47-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:GABAergic-neuron_expressed
  Transcripts expressed in hypodermis, according to PAT-Seq analysis using Pdpy-7-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:hypodermis_expressed
  Transcripts expressed in intestine, according to PAT-Seq analysis using Pges-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:intestine_expressed
  Transcripts that showed significantly decreased expression in day 3 adult hermaphrodite comparing to in L4 larva daf-16(mu86);glp-1(e2141) animals. Fold change > 2, FDR < 0.05 WBPaper00064088:Day-3-adult_vs_L4_downregulated_daf-16(mu86);glp-1(e2141)
  Transcripts that showed significantly increased expression in sin-3(tm1276) comparing to in N2. DESeq2, fold change > 2, p-value < 0.01. WBPaper00061203:sin-3(tm1276)_upregulated
  Transcripts that showed significantly decreased expression in sin-3(tm1276) comparing to in N2 at early embryo when there were only 3 -5 eggs in the adult. DESeq2, fold change > 2, adjusted p-value < 0.01 WBPaper00058598:sin-3(tm1276)_downregulated
  Transcripts that showed significantly increased expression in oocyte germline cells comparing to in mitosis germline cells. Log2 Fold change > 2 or <-1, p-value < 0.05. WBPaper00053599:oocyte_vs_mitosis_upregulated
  Transcripts that showed significantly increased expression in xrep-4(lax137). DESeq2. Genes were selected if their p value < 0.01. WBPaper00066062:xrep-4(lax137)_upregulated
  Genes with increased RNA expression after 24 hours rotenone treatment EdgeR provides statistical routines for determining differential expression in digital gene expression data using a model based on the negative binomial distribution. The resulting p-values were adjusted using the Benjamini and Hochbergs approach for controlling the false discovery rate (FDR). Transcripts with an adjusted p-value smaller 0.05 were assigned as differentially expressed. WBPaper00044426:rotenone_24h_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:dopaminergic-neurons_L3-L4-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:excretory-cell_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:GABAergic-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 0hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:germline-precursors_blastula-embryo_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:hypodermis_L3-L4-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:intestine_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:PVD-OLL-neurons_L3-L4-larva_expressed
  Transcripts detected in germline isolated from day-1 adult hermaphrodite animals. All three experiments have CPM >= 1. WBPaper00067147:germline_expressed
  Genes that were not enriched in either spermatogenic fem-3(q96gf) nor oogenic fog-2(q71) gonads, according to RNAseq analysis. To identify differentially expressed transcripts, authors used R/Bioconductor package DESeq. WBPaper00045521:Gender_Neutral
  Transcripts that showed altered expression from P0 to F2 generation animals after N2 parental generation were treated with antimycin, but not in damt-1(gk961032) P0 to F2 animals after the parenal generaton were treated with antimycin. N.A. WBPaper00055862:antimycin_damt-1(gk961032)_regulated
  TGF- Dauer pathway adult transcriptional targets. Results obtained by comparing the microarray results of the dauer-constitutive mutants daf-7(e1372), daf-7(m62), and daf-1(m40) with dauer-defective mutants daf-3(mgDf90), daf-5(e1386), and daf-7(e1372);daf-3(mgDf90) double mutants at the permissive temperature, 20C, on the first day of adulthood. SAM WBPaper00031040:TGF-beta_adult_downregulated
  Genes expressed in N2. Expressed transcripts were identified on the basis of a Present call in 3 out of 4 N2 experiments as determined by Affymetrix MAS 5.0. WBPaper00025141:N2_Expressed_Genes
heat-shock hlh-1 Genes enriched in HLH-1 heat shock dataset. A two-class unpaired analysis was performed to identify genes that are elevated 1.7-fold or greater when compared with the reference for each dataset, at a false discovery rate of 1.8% or less for M0 and 1.2% or less for the M24 datasets. WBPaper00031003:hlh_1_enriched
  Transcripts that showed significantly increased expression in spr-1(ok2144) comparing to in N2. DESeq2, fold change > 2, p-value < 0.01. WBPaper00061203:spr-1(ok2144)_upregulated
  Transcripts that showed significantly increased expression in zip-3(gk3164) comparing to in N2, after exposed to P. aeruginosa for 18 hours. p < 0.05 WBPaper00056326:zip-3(gk3164)_upregulated_P.aeruginosa-infected

5 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr1039619 Tiling arrays expression graphs  
    Expr2032904 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1160930 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr2014671 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1017419 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  

4 GO Annotation

Annotation Extension Qualifier
  enables
  enables
  involved_in
  part_of

10 Homologues

Type
orthologue
orthologue
orthologue
orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00021902 5155462 5158774 -1

4 Ontology Annotations

Annotation Extension Qualifier
  enables
  enables
  involved_in
  part_of

0 Regulates Expr Cluster

1 Sequence

Length
3313

1 Sequence Ontology Term

Identifier Name Description
gene  

0 Strains

1 Upstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrIII_5158775..5158874   100 III: 5158775-5158874 Caenorhabditis elegans