WormMine

WS295

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00012670 Gene Name  cpg-23
Sequence Name  ? Y39B6A.8 Organism  Caenorhabditis elegans
Automated Description  Enriched in epithelial cell and neurons based on single-cell RNA-seq and RNA-seq studies. Is affected by several genes including nuo-6; atfs-1; and atf-7 based on tiling array; microarray; and RNA-seq studies. Is affected by seven chemicals including methylmercuric chloride; multi-walled carbon nanotube; and stavudine based on microarray and RNA-seq studies. Is predicted to encode a protein with the following domain: Cysteine-rich repeat. Biotype  SO:0001217
Genetic Position  Length (nt)  ? 4895
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00012670

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:Y39B6A.8.1 Y39B6A.8.1 1521   V: 19140795-19145689
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:Y39B6A.8 Y39B6A.8 1281   V: 19140888-19141041

4 RNAi Result

WormBase ID
WBRNAi00056213
WBRNAi00009762
WBRNAi00020393
WBRNAi00036930

128 Allele

Public Name
gk963271
gk962705
gk963489
gk963304
gk963809
gk963637
WBVar02063016
WBVar02063015
WBVar02063018
WBVar02063017
WBVar02063019
WBVar00247050
gk905125
gk901359
gk459148
gk526124
gk582047
gk829095
gk503016
gk928704
gk594030
gk596906
gk710736
gk328146
gk644926
gk616881
gk896953
gk388840
gk832408
gk623089

1 Chromosome

WormBase ID Organism Length (nt)
V Caenorhabditis elegans 20924180  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00012670 19140795 19145689 1

2 Data Sets

Name URL
WormBaseAcedbConverter  
C. elegans genomic annotations (GFF3 Gene)  

0 Downstream Intergenic Region

114 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Transcripts of coding genes that showed significantly decreased expression in muscle. DESeq2 (version 1.24.0). Transcripts with a false-discovery rate adjusted p-value less than 0.05 were considered significantly differentially expressed. WBPaper00062325:muscle_depleted_coding-RNA
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:AVE-neuron_L1-larva_expressed
  Neuronally enriched transcripts according to a comparison of neuronal nuclei IP samples to total nuclei using isolation of nuclei from tagged specific cell types (INTACT) technology. DESEQ2, fold change > 2 and FDR < 0.01. WBPaper00062103:neuron_enriched
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:bodywall-muscle_L1-larva_expressed
  Transcripts that showed significantly increased expression in ogt-1(ok1474) neuronal cells isolated by FACs comparing to in FACs isolated neuronal cells from wild type. DESeq2, fold change > 2, FDR < 0.05. WBPaper00066485:ogt-1(ok1474)_upregulated_neuron
  Transcripts that showed significantly increased expression in sin-3(tm1276) comparing to in N2. DESeq2, fold change > 2, p-value < 0.01. WBPaper00061203:sin-3(tm1276)_upregulated
  Single-cell RNA-Seq cell group 21_1 with unidentified tissue expression pattern. scVI 0.6.0 WBPaper00065841:21_1
  Transcripts that showed significantly changed expression in 6-day post-L4 adult hermaphrodite comparing to in 1-day post L4 adult hermaphrodite animals. Sleuth WBPaper00051558:aging_regulated
  Transcripts that showed significantly altered expression after 24 hour exposure to stavudine (d4T) starting at L1 lava stage. DESeq WBPaper00053302:stavudine_24h_regulated
  Transcripts that showed significantly decreased expression in sin-3(tm1276) comparing to in N2 at early embryo when there were only 3 -5 eggs in the adult. DESeq2, fold change > 2, adjusted p-value < 0.01 WBPaper00058598:sin-3(tm1276)_downregulated
  Genes that showed oscillating mRNA expression level throughout the 16 hour time courses from L3 larva to young adult. The following three lines of R code were used to perform the classification: increasing <-2*amplitude-PC1 < -1.7; oscillating <-!increasing & (amplitude > 0.55); flat <-!increasing & !oscillating; Note that the amplitude of a sinusoidal wave corresponds to only half the fold change between trough and peak. WBPaper00044736:oscillating_dev_expression
  Transcripts that showed significantly increased expression in hda-1(ne4752[3xFLAG-Degron-HDA-1]) in gonads dissected from 1-day old adult animals. Salmon was used to map the mRNA-seq reads with the worm database WS268, and its output files were imported to DESeq2 in R. The differentially expressed genes were filtered by fold change more than 2 and adjusted p-value < 0.05. The scatter plots were generated by the plot function in R. WBPaper00061479:hda-1(ne4752)_upregulated
  Transcripts that showed significantly increased expression in ilc-17.1(syb5296) comparing to in N2 animals at L4 larva stage. DESeq2, fold change > 2, FDR < 0.05. WBPaper00066594:ilc-17.1(syb5296)_upregulated
  Transcripts that showed significantly increased expression in hda-2(ok1479) comparing to in N2 animals. DESeq2 (version 1.28.1), FDR < 0.01, fold change > 2. WBPaper00062159:hda-2(ok1479)_upregulated
  Transcripts that showed significantly increased expression in srbc-48(ac23);kyIs262;fer-1(b232ts) comparing to in kyIs262;fer-1(b232ts), 24h after infection with P.aeruginosa. DESeq2, FDR <0.05, fold change > 2. WBPaper00059664:srbc-48(ac23)_upregulated
  Transcripts that showed significantly decreased expression in set-2(tm1630) animals at embryo stage, comparing to in N2 animals. DESeq2 (v2.1.8.3) was used to determine DE genes and to generate principal component and scatter plots. DE genes with FDR < 0.05 were analysed using g:Profiler with Bonferroni correction. WBPaper00060014:set-2(tm1630)_downregulated
  Genes regulated by DAF-12, according to whole transcriptome profiling to compare genome-wide regulatory influences of DPY-21 and SET-4 to those of the key transcription factors controlling dauer arrest in eak-7;akt-1 animals, DAF-16 and DAF-12. Authors identified genes differentially expressed between wild-type and eak-7;akt-1 double mutant animals [fold change >= 1.5 and false discovery rate (FDR) < 0.05]. Authors then compared the transcriptomes of eak-7;akt-1 double mutants to those of eak-7;akt-1 animals harboring mutations in dpy-21, set-4, daf-16, or daf-12, and identified genes that are differentially expressed in the opposite direction as in wild-type relative to eak-7;akt-1. Annotated gene expression data output from CuffDiff v2.2.1 was read into R version 3.2.1 for six comparisons: eak-7;akt-1 compared to (1) wild-type, (2) daf-16(mu86);eak-7;akt-1, (3) daf-12;eak-7;akt-1, (4) set-4(n4600);eak-7;akt-1, (5) set-4(dp268);eak-7;akt-1, and (6) dpy-21;eak-7;akt-1. Authors filtered genes by the following criteria: (1) status = OK for wild-type vs. eak-7;akt-1, (2) fold change (FC) >= 1.5 or FC <= 1/1.5 for wild-type vs. eak-7;akt-1 and (3) FDR < 0.05 for at least two separate comparisons. WBPaper00050801:DAF-12_dauer_regulome
  Genes regulated by DAF-16, according to whole transcriptome profiling to compare genome-wide regulatory influences of DPY-21 and SET-4 to those of the key transcription factors controlling dauer arrest in eak-7;akt-1 animals, DAF-16 and DAF-12. Authors identified genes differentially expressed between wild-type and eak-7;akt-1 double mutant animals [fold change >= 1.5 and false discovery rate (FDR) < 0.05]. Authors then compared the transcriptomes of eak-7;akt-1 double mutants to those of eak-7;akt-1 animals harboring mutations in dpy-21, set-4, daf-16, or daf-12, and identified genes that are differentially expressed in the opposite direction as in wild-type relative to eak-7;akt-1. Annotated gene expression data output from CuffDiff v2.2.1 was read into R version 3.2.1 for six comparisons: eak-7;akt-1 compared to (1) wild-type, (2) daf-16(mu86);eak-7;akt-1, (3) daf-12;eak-7;akt-1, (4) set-4(n4600);eak-7;akt-1, (5) set-4(dp268);eak-7;akt-1, and (6) dpy-21;eak-7;akt-1. Authors filtered genes by the following criteria: (1) status = OK for wild-type vs. eak-7;akt-1, (2) fold change (FC) >= 1.5 or FC <= 1/1.5 for wild-type vs. eak-7;akt-1 and (3) FDR < 0.05 for at least two separate comparisons. WBPaper00050801:DAF-16_dauer_regulome
  Genes regulated by DPY-21, according to whole transcriptome profiling to compare genome-wide regulatory influences of DPY-21 and SET-4 to those of the key transcription factors controlling dauer arrest in eak-7;akt-1 animals, DAF-16 and DAF-12. Authors identified genes differentially expressed between wild-type and eak-7;akt-1 double mutant animals [fold change >= 1.5 and false discovery rate (FDR) < 0.05]. Authors then compared the transcriptomes of eak-7;akt-1 double mutants to those of eak-7;akt-1 animals harboring mutations in dpy-21, set-4, daf-16, or daf-12, and identified genes that are differentially expressed in the opposite direction as in wild-type relative to eak-7;akt-1. Annotated gene expression data output from CuffDiff v2.2.1 was read into R version 3.2.1 for six comparisons: eak-7;akt-1 compared to (1) wild-type, (2) daf-16(mu86);eak-7;akt-1, (3) daf-12;eak-7;akt-1, (4) set-4(n4600);eak-7;akt-1, (5) set-4(dp268);eak-7;akt-1, and (6) dpy-21;eak-7;akt-1. Authors filtered genes by the following criteria: (1) status = OK for wild-type vs. eak-7;akt-1, (2) fold change (FC) >= 1.5 or FC <= 1/1.5 for wild-type vs. eak-7;akt-1 and (3) FDR < 0.05 for at least two separate comparisons. WBPaper00050801:DPY-21_dauer_regulome
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:hypodermis_L1-larva_expressed
  Genes expressed in N2. Expressed transcripts were identified on the basis of a Present call in 3 out of 4 N2 experiments as determined by Affymetrix MAS 5.0. WBPaper00025141:N2_Expressed_Genes
  Transcripts that showed significantly decreased expression after animals grew in 500 uM glycine from hatch till 1-day post L4 adult, comparing to untreated animals. Differential expression was assessed using a nempirical Bayes moderated t-test within limmas linear model framework including the precision weights estimated by voom.Resulting p-values were corrected for multiple testing using the Benjamini-Hochberg false discovery rate. Curator applied threshold: fold change > 2, adjusted p-value < 0.01. WBPaper00056330:glycine_downregulated
  Transcripts that showed significantly decreased expression in aak-1(tm1944);aak-2(ok524) animals comparing to in N2. DEseq 1.18.0, adjusted p-value < 0.05. WBPaper00056471:aak-1(tm1944);aak-2(ok524)_downregulated
  Transcripts that showed significantly decreased expression in nhr-114(gk849) comparing to wild type animals at L4 larva. DESeq2 1.26.0, fold change > 2, FDR < 0.05. WBPaper00064539:nhr-114(gk849)_downregulated
24 hours of AgNPs exposure. Genes downregulated more than 2 fold after 24 hours of AgNPs exposure. Statistical differences between the control and exposed worms were determined by a parametric t test, and a Pearson correlation test was performed for correlation analysis, using the Statistical Package for the Social Sciences (SPSS, Chicago, IL). WBPaper00034661:AgNPs_downregulated
  Transcripts that showed significantly decreased expression in pals-17(syb3980) comparing to in N2 animals at young adult stage. Differential expression analyses were performed using limma-voom in Galaxy, adj p <= 0.05, logFC > 2 WBPaper00065984:pals-17(syb3980)_downregulated
  Transcripts that showed significantly increased expression in jmjd-3.1p::jmjd-3.1 comparing to in N2. DESeq2 Benjamini-Hochberg adjusted p-value < 0.05. WBPaper00049545:jmjd-3.1(+)_upregulated
  Transcripts depleted in RIS neurons comparing to in all cells. edgeR 3.24.3, FDR < 0.01 WBPaper00058969:RIS_depleted

5 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr1035603 Tiling arrays expression graphs  
    Expr2025615 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1010992 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr1159707 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr2007380 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  

0 GO Annotation

0 Homologues

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00012670 19140795 19145689 1

0 Ontology Annotations

0 Regulates Expr Cluster

1 Sequence

Length
4895

1 Sequence Ontology Term