WormMine

WS295

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00002210 Gene Name  kin-29
Sequence Name  ? F58H12.1 Brief Description  kin-29 encodes a serine/threonine kinase with significant homology in the kinase domain to the AMP-activated protein kinase (AMPK) and SNF1 kinases; the AMP-kinase cascade is activated by cellular stresses that deplete ATP; AMP-kinase is believed to protect the mammalian cell by 'switching off' ATP-consuming pathways like fatty acid synthesis, by phosphorylating key regulatory enzymes, and switching on alternative pathways for ATP generation; kin-29 is involved in regulating the expression of chemosensory receptors and entry into the dauer pathway; kin-29 also affects body size via interaction with the Sma/Mab pathway and lifespan, with mutants exhibiting a smaller body size and increased life span; a functional KIN-29-GFP fusion protein is expressed in sensory neurons and many other cell types, and localizes to the cytoplasm; under conditions of cellular stress like heat shock, KIN-29-GFP translocates to the nucleus.
Organism  Caenorhabditis elegans Automated Description  Enables histone deacetylase inhibitor activity and protein serine/threonine kinase activity. Involved in several processes, including dauer entry; positive regulation of growth rate; and transforming growth factor beta receptor signaling pathway. Located in cytoplasm and nucleus. Expressed in body wall musculature; hypodermis; intestine; nervous system; and non-striated muscle.
Biotype  SO:0001217 Genetic Position  X :-12.6998 ±0.039611
Length (nt)  ? 8517
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00002210

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:F58H12.1.1 F58H12.1.1 3409   X: 2843922-2852438
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:F58H12.1 F58H12.1 2469   X: 2844811-2844995

4 RNAi Result

WormBase ID
WBRNAi00001523
WBRNAi00049074
WBRNAi00016028
WBRNAi00098420

158 Allele

Public Name
gk963725
WBVar01757856
WBVar01757851
WBVar01757850
WBVar01757853
WBVar01757852
WBVar01757855
WBVar01757854
WBVar01690144
WBVar01601179
WBVar01601180
WBVar00076550
WBVar00076551
WBVar00076552
WBVar00076548
WBVar00076549
WBVar01979929
WBVar01979928
WBVar01979933
WBVar01979932
WBVar01979931
WBVar01979930
WBVar01820911
WBVar01822276
WBVar01822275
WBVar01822274
WBVar02026849
WBVar02026848
WBVar02026850
WBVar02026851

1 Chromosome

WormBase ID Organism Length (nt)
X Caenorhabditis elegans 17718942  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00002210 2843922 2852438 -1

4 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  
Panther orthologue and paralogue predictions  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrX_2840293..2843921   3629 X: 2840293-2843921 Caenorhabditis elegans

150 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Transcripts that showed significantly increased expression in L1 neural cells comparing to in adult neural cells. DESeq2 (v1.18.1) fold change > 2, P-adj<0.05, using BenjaminiHochberg correction. WBPaper00060811:L1_vs_adult_upregulated_neural
  Transcripts expressed in neuronal cells, by analyzingfluorescence-activated cell sorted (FACS) neurons. DESeq. False discovry rate (FDR) < 0.1. WBPaper00048988:neuron_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L1-larva_expressed
adult vs dauer larva Transcripts that showed differential expression in adult vs dauer lava in N2 animals at 20C. N.A. WBPaper00050488:adult_vs_dauer_regulated_N2_20C
  mRNAs that showed decreased expression in 1 cell mebryo comparing to in oocyte, according to RNAseq analysis. Gaussian error propagation. As cutoff for the up-regulated genes authors used log2 fold change > 1 and P < 0.05 and as cutoff for the down-regulated genes authors used log2 fold change < -1 and P < 0.05. WBPaper00045420:fertilization_downregulated_transcript
Osmotic stress Transcripts that showed significantly altered expression with 500 mM salt (NaCl) vs 100 mM salt when food was present DESeq(version 1.10.1), FDR < 0.05. WBPaper00050726:OsmoticStress_regulated_Food
  Transcripts that showed significantly increased expression glp-1(e2141); TU3401 animals comparing to in TU3401 animals. Fold change > 2, FDR < 0.01. WBPaper00065993:glp-1(e2141)_upregulated
Bacteria infection: Enterococcus faecalis Genes with increased expression after 24 hours of infection by E.faecalis Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:E.faecalis_24hr_upregulated_TilingArray
  Transcripts expressed in the epithelial tissues surrounding the pharynx that includes the arcade and intestinal valve (AIV) cells, according to PAT-Seq analysis using Pbath-15-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:arcade_intestinal-valve_expressed
  Transcripts expressed in GABAergic neuron, according to PAT-Seq analysis using Punc-47-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:GABAergic-neuron_expressed
  Transcripts expressed in hypodermis, according to PAT-Seq analysis using Pdpy-7-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:hypodermis_expressed
  Transcripts expressed in intestine, according to PAT-Seq analysis using Pges-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:intestine_expressed
  Transcripts expressed in NMDA neuron, according to PAT-Seq analysis using Pnmr-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:NMDA-neuron_expressed
  Transcripts expressed in pharynx, according to PAT-Seq analysis using Pmyo-2-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:pharynx_expressed
  Transcripts expressed in seam cells, according to PAT-Seq analysis using Pgrd-10-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:seam_expressed
  Transcripts that showed significantly increased expression after four-day-old young adult worms were placed on NGM plates seeded with OP50 in the presence 5% Agaro-oligosaccharides(AGO) for 24 h, comparing to animals grown in the absence of AGO. Fold change > 2. WBPaper00064306:Agaro-oligosaccharides_upregulated
  Transcripts that showed significantly increased expression in sin-3(tm1276) comparing to in N2. DESeq2, fold change > 2, p-value < 0.01. WBPaper00061203:sin-3(tm1276)_upregulated
  Transcripts that showed significantly increased expression in aak-1(tm1944);aak-2(ok524) animals comparing to in N2. DEseq 1.18.0, adjusted p-value < 0.05. WBPaper00056471:aak-1(tm1944);aak-2(ok524)_upregulated
Bacteria infection: Staphylococcus aureus MW2. 4 hours of exposure. Transcripts that showed significantly increased expression after N2 animals had 4 hours of infection by Staphylococcus aureus (MW2). DEseq 1.18.0, adjusted p-value < 0.05. WBPaper00056471:S.aureus-4h_upregulated_N2
  Transcripts that showed significantly decreased expression in N2 animals exposed to 0.1mM Paraquat from hatching to reaching adult stage. DESeq2 version 1.22.2, p < 0.05 WBPaper00064716:paraquat_downregulated
  Transcripts that showed significantly altered expression after 24 hour exposure to stavudine (d4T) starting at L1 lava stage. DESeq WBPaper00053302:stavudine_24h_regulated
  Transcripts that showed significantly decreased expression in sin-3(tm1276) comparing to in N2 at early embryo when there were only 3 -5 eggs in the adult. DESeq2, fold change > 2, adjusted p-value < 0.01 WBPaper00058598:sin-3(tm1276)_downregulated
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:A-class-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L2-larva_expressed
  Proteins that showed significantly decreased expression after 1-day-old wild type adults were exposed to cisplatin (300ug per mL) for 6 hours. The differential expression analysis was performed in R. Differentially expressed proteins were identified by using a two-sided t-test on log-transformed data. WBPaper00065373:Cisplatin_downregulated_WT
  Transcripts that showed significantly increased expression in hda-1[KKRR]-smo-1 in gonads dissected from 1-day old adult animals. Salmon was used to map the mRNA-seq reads with the worm database WS268, and its output files were imported to DESeq2 in R. The differentially expressed genes were filtered by fold change more than 2 and adjusted p-value < 0.05. The scatter plots were generated by the plot function in R. WBPaper00061479:hda-1(ne4748)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:dopaminergic-neurons_L3-L4-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:excretory-cell_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:GABAergic-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:glr-1(+)-neurons_L2-larva_expressed

10 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr1031292 Tiling arrays expression graphs  
    Expr1773 kin-29::GFP expression was primarily neuronal, with additional expression in body wall muscle and hypodermal cells. Expression persisted through all stages of postembryonic development. Among neuronal cells, kin-29 was expressed in multiple sensory neurons and interneurons in the lateral, anterior, and lumbar ganglia, as well as in motor neurons in the ventral motor cord. kin-29::GFP colocalizes with odr-1::RFP expression in both the AWB and AWC olfactory neurons. kin-29 was also expressed in the ASH, AFD, ASJ, AWA, ASK, ASG, and ASI sensory neurons. In addition, kin-29 was expressed in the AIY and AIZ interneurons. Additional kin-29-expressing cells were not identified definitively. KIN-29::GFP was localized cytoplasmically, and was excluded from the nuclei of most, if not all, cell types. KIN-29::GFP was localized cytoplasmically at all stages of development examined, including in dauer larvae. However, KIN-29::GFP was rapidly translocated to the nucleus upon heat shock, but not upon starvation for 18 hr, addition of dauer pheromone, or in a tph-1 mutant background, although transient nuclear localization in a subset of cell types cannot be ruled out. Heat shock-induced translocation was observed in most, if not all cells, including neurons, muscles, and hypodermal cells. Translocation was reversible; KIN-29::GFP was relocalized to the cytoplasm within an hour upon temperature downshift.
Picture: Fig. 5.   Expr8628 Most notably, KIN-29 is seen in several neuronal cells in the head and tail throughout the course of development. Several of the sensory neurons found in the head express KIN-29, including ASH, AFD and ASI. Additional neuronal staining is observed in both CAN cells and the ventral nerve cord. Expression was found both in pharyngeal and body wall muscle. During the L1, L3 and L4 stages, expression was see throughout the intestine both in the nuclei and to a lesser extent in the cytoplasm and in cells in the tail. This intestinal expression is rarely seen in later stages of development. Occasionally, expression is seen in vulval muscles as well. Expressed in the nuclei and to a lesser extent in the cytoplasm in intestine.
    Expr14935 kin-29::degron::GFP is expressed in head neurons and in the intestine consistent with previous reports (Lanjuin and Sengupta 2002).  
    Expr14895 The construct with the kin-29 promoter driving GFP showed the same expression pattern as described previously by Lanjuin and Sengupta, 2002: it is expressed broadly in the nervous system including the CANs, in body wall muscle cells and in the hypodermis persisting through development.  
    Expr1152815 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr2012937 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr2031169 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1014516 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr15043   During mid and late L1 lethargus, KIN-29 localized to the nuclei of a subset of odr-4(+) neurons.

44 GO Annotation

Annotation Extension Qualifier
  enables
  enables
  enables
has_input(WB:WBGene00001837) enables
has_input(WB:WBGene00002210) enables
  enables
has_input(WB:WBGene00006069) acts_upstream_of
  enables
  involved_in
  involved_in
  enables
  involved_in
has_input(WB:WBGene00001837) enables
  enables
  enables
  enables
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in

1 Homologues

Type
least diverged orthologue

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00002210 2843922 2852438 -1

44 Ontology Annotations

Annotation Extension Qualifier
  enables
  enables
  enables
has_input(WB:WBGene00001837) enables
has_input(WB:WBGene00002210) enables
  enables
has_input(WB:WBGene00006069) acts_upstream_of
  enables
  involved_in
  involved_in
  enables
  involved_in
has_input(WB:WBGene00001837) enables
  enables
  enables
  enables
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in

0 Regulates Expr Cluster

1 Sequence

Length
8517

1 Sequence Ontology Term

Identifier Name Description
gene  

7 Strains

WormBase ID
WBStrain00031130
WBStrain00031136
WBStrain00031135
WBStrain00031137
WBStrain00031139
WBStrain00035855
WBStrain00035898

1 Upstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrX_2852439..2853673   1235 X: 2852439-2853673 Caenorhabditis elegans