WormMine

WS295

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00005935 Gene Name  srx-44
Sequence Name  ? T10C6.4 Organism  Caenorhabditis elegans
Automated Description  Predicted to be located in membrane. Expressed in ADLL; ADLR; ASJL; and ASJR. Biotype  SO:0001217
Genetic Position  V :9.35653 ±0.005966 Length (nt)  ? 2311
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00005935

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:T10C6.4.1 T10C6.4.1 996   V: 16020342-16022652
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:T10C6.4 T10C6.4 969   V: 16020369-16020373

6 RNAi Result

WormBase ID
WBRNAi00053031
WBRNAi00018534
WBRNAi00023310
WBRNAi00023586
WBRNAi00023820
WBRNAi00024108

124 Allele

Public Name
gk963271
gk964458
gk964459
WBVar02124626
WBVar02124261
WBVar02122682
WBVar02124830
WBVar02124905
WBVar02123702
WBVar02121632
WBVar02062558
WBVar02062557
WBVar01976122
WBVar02120520
gk530824
gk679345
gk356099
gk674070
gk357466
gk355668
gk710712
gk319258
WBVar00029740
gk905116
gk554864
WBVar01874534
gk594643
WBVar01874535
gk401858
WBVar01874536

1 Chromosome

WormBase ID Organism Length (nt)
V Caenorhabditis elegans 20924180  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00005935 16020342 16022652 1

3 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrV_16022653..16023350   698 V: 16022653-16023350 Caenorhabditis elegans

31 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Transcripts of coding genes that showed significantly decreased expression in muscle. DESeq2 (version 1.24.0). Transcripts with a false-discovery rate adjusted p-value less than 0.05 were considered significantly differentially expressed. WBPaper00062325:muscle_depleted_coding-RNA
  Neuronally enriched transcripts according to a comparison of neuronal nuclei IP samples to total nuclei using isolation of nuclei from tagged specific cell types (INTACT) technology. DESEQ2, fold change > 2 and FDR < 0.01. WBPaper00062103:neuron_enriched
  Transcripts that showed significantly increased expression in ogt-1(ok1474) neuronal cells isolated by FACs comparing to in FACs isolated neuronal cells from wild type. DESeq2, fold change > 2, FDR < 0.05. WBPaper00066485:ogt-1(ok1474)_upregulated_neuron
Bacteria infection: Enterococcus faecalis Genes with increased expression after 24 hours of infection by E.faecalis Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:E.faecalis_24hr_upregulated_TilingArray
  Genes with expression level regulated by genotype (N2 vs CB4856) at Late reproduction stage (96 hours at 24 centigrade). Authors permuted transcript values and used a genome-wide threshold of log10 P-value = 2, which resembles a false discovery rate (FDR) of 0.0118. WBPaper00040858:eQTL_regulated_reproductive
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:GABAergic-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 0hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:germline-precursors_blastula-embryo_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:glr-1(+)-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:intestine_L2-larva_expressed
  Transcripts that showed significantly decreased expression in eat-2(ad1116) comparing to in N2 at 3-days post L4 adult hermaphrodite animals. DESeq2(v1.14.1), fold change > 2, p-value < 0.05 WBPaper00055354:eat-2(ad1116)_downregulated
  Transcripts that showed altered expression in cat-1(RNAi) animals comparing to control animals injected with empty vector. p-value <= 0.05 WBPaper00066902:cat-1(RNAi)_regulated
Temprature shift to 28C for 24 hours. Transcripts that showed significantly increased expression after animals were exposed to 28C temperature for 24 hours. Differentially expressed genes wereidentified using DESeq (v.1.18.0) by normalizing readsbased on the negative binomial distribution method andcomparing each HS timepoint to the 0-h control. WBPaper00061341:28C_24h_upregulated
Temprature shift to 28C for 48 hours. Transcripts that showed significantly increased expression after animals were exposed to 28C temperature for 48 hours. Differentially expressed genes wereidentified using DESeq (v.1.18.0) by normalizing readsbased on the negative binomial distribution method andcomparing each HS timepoint to the 0-h control. WBPaper00061341:28C_48h_upregulated
  Transcripts that showed significantly increased expression in daf-2(e1370) neurons comparing to in N2 neurons at day 8adult stage. DESeq2, FDR < 0.05, fold change > 2. WBPaper00066978:daf-2(e1370)_upregulated_neuron
  Transcripts that showed significantly increased expression in daf-16(mu86);daf-2(e1370) neurons comparing to in daf-2(e1370) neurons at day 8adult stage. DESeq2, FDR < 0.05, fold change > 2. WBPaper00066978:daf-16(mu86)_upregulated_neuron
  Transcripts that showed significantly decreased expression in whole animal day 1 N2 adults comparing to in whole animal day 8 N2 adults. DESeq2, FDR < 0.05, fold change > 2. WBPaper00066978:Day1Adult_vs_Day8Adult_downregulated_neuron
  Significantly upregulated genes from cyc-1(RNAi) microarrays using SAM algorithm with an FDR < 0.1 from adult-only chips. SAM algorithm with an FDR < 0.1. WBPaper00033065:cyc-1(RNAi)_upregulated
  Genes from N2 animals with significantly increased expression after 72 hours of treatment on growth media with 10uM rapamycin in 2% DMSO. Analysis of gene expression data was carried out with the Affymetrix Transcriptome Analysis Console. Data preprocessing (using RMA normalization) and QC metrics were performed using Affymetrix Expression Console TM and manually inspected afterwards. Expression analysis was carried out for each two pairwise conditions. FDR statistical correction for multiple testing resulted in a slightly lower number of DEGs in most cases. P-value < 0.05 and fold change > 2.0 were used to determine differentially expressed genes. WBPaper00048989:N2_rapamycin_upregulated
  Transcripts that showed altered expression in cat-2(RNAi) animals comparing to control animals injected with empty vector. p-value <= 0.05 WBPaper00066902:cat-2(RNAi)_regulated
  Transcripts expressed in germline, according to RNA tomography. RNA tomography WBPaper00055648:germline_expressed
  Expression Pattern Group B, enriched for genes involved in embryonic development. These patterns have in common that they all have genes of which the expression goes up after the juvenile stage. The expression of the genes in these patterns remains high or even goes up after reproduction. The significance (P 0.0001) of the relative age (time) was used to determine if a gene was differentially expressed between the three age (time) groups. The effect of this factor explaining gene expression differences was used to determine if the expression went up or down during the two age/time periods (t1 - t2 and t2 -t3). Authors used a permutation approach to determine the thresholds for the different mapping strategies. For each of the used models for eQTL mapping, authors used 23,000 permutations. For each permutation, authors randomly picked a spot; each spot could only be picked once. The gene expression and relative lifespan values were than randomly distributed over the RILs (and time points) and used for mapping. In this way, authors obtained a threshold for each of the explaining factors. For the single time points, authors used a FDR of 0.01 to adjust for multiple testing. The genome-wide threshold for this FDR is -log10 P = 3.8 for each of the three time points. For the combined models (t1 to t2 and t2 to t3), authors used a genome-wide threshold of -log10 P = 4, which resembles an FDR of 0.006, 0.001, and 0.006 for marker, age, and the interaction between marker and age, respectively. To determine the threshold for the single gene examples, authors used 1000 permutations as in the genome-wide threshold. The difference is that they use the gene under study in all of the permutations. The P-values for the gene specific thresholds were determined at FDR = 0.05. WBPaper00036286:Pattern_B
  Down-regulated genes (fold change > 1.5) in two CoQ-deficient clk-1 mutant strains (e2519, qm30) compared to wild types N2. Fold-changes of intensities were calculated from the arithmetic mean of gene expression values between experimental and corresponding control group. Fold change >= 1.5 was used as cut-off. WBPaper00045774:clk-1_downregulated
  Genes in the bottom 10% of expression level across the triplicate L3 samples. To generate the top10 and bottom10 gene sets, authors ranked all genes by mean expression array signal intensity across the three replicates, then took the top and bottom deciles (1,841 genes each) to represent genes with high and low expression. To generate the top10 and bottom10 gene sets, authors ranked all genes by mean expression array signal intensity across the three replicates, then took the top and bottom deciles (1,841 genes each) to represent genes with high and low expression. WBPaper00032528:L3_depleted
  Top 300 transcripts enriched in ABarppaapp, ABarpppapp according to single cell RNAseq. Top 300 enriched transcripts were determined by log2.ratio of the tpm in the cell type vs the tpm in the other cells * the log2 of the cell.type tpm. WBPaper00061340:Neuroblast_ALM_BDU
Bacteria infection: Enterococcus faecalis Genes with decreased expression after 24 hours of infection by E.faecalis Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:E.faecalis_24hr_downregulated_RNAseq
Hypoxia: 7% oxygen. Transcripts that showed significantly decreased expression at animals treated with 7% oxygen, comparing to animals grown at 21% oxygen. Fold change > 2, p-value < 0.05. WBPaper00060661:hypoxia_downregulated
  Coexpression clique No. 282, srj-21-srh-32, on the genome-wide coexpression clique map for the nematode GPL200 platform. All available microarray datasets for the GPL200 platform (Affymetrix C. elegans Genome Array) were obtained from the GEO repository. This included 2243 individual microarray experiments. These were normalized against each other with the software RMAexpress (Bolstad, 2014). Based on these normalized values, Pearsons correlation coefficients were obtained for each probe-probe pair of the 22,620 probes represented on this array type. The resulting list of correlation coefficients was then ranked to generate the ranked coexpression database with information on each probe represented on the GPL200 platform. WBPaper00061527:srj-21-srh-32
  Single-cell RNA-Seq cell group 81_0 expressed in neuron. scVI 0.6.0 WBPaper00065841:81_0

7 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr2035001 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
Other Strain: OH14968   Expr14183 ADL, ASJ  
    Expr13453 Transgenes bearing the N2 promoter sequence drove GFP expression selectively in the two ADL sensory neurons.  
    Expr13454   Full-length SRX-44 translational fusions were localized to the sensory cilia of ADL.
    Expr1012301 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr1156633 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr2016833 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  

1 GO Annotation

Annotation Extension Qualifier
  located_in

0 Homologues

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00005935 16020342 16022652 1

1 Ontology Annotations

Annotation Extension Qualifier
  located_in

0 Regulates Expr Cluster

1 Sequence

Length
2311

1 Sequence Ontology Term

Identifier Name Description
gene  

0 Strains

1 Upstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrV_16020067..16020341   275 V: 16020067-16020341 Caenorhabditis elegans