WormMine

WS295

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00011655 Gene Name  T09E11.6
Sequence Name  ? T09E11.6 Organism  Caenorhabditis elegans
Automated Description  Predicted to enable glycosyltransferase activity. Predicted to be located in Golgi membrane. Biotype  SO:0001217
Genetic Position  Length (nt)  ? 2285
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00011655

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:T09E11.6.1 T09E11.6.1 1485   I: 12366335-12368619
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:T09E11.6 T09E11.6 1485   I: 12366335-12366463

1 RNAi Result

WormBase ID
WBRNAi00052957

83 Allele

Public Name
gk962706
gk963849
gk962859
gk964175
gk963095
WBVar01691816
WBVar01691815
gk666947
gk352331
gk766968
gk662125
gk323180
gk512597
gk743867
gk630439
gk865848
gk339152
gk378635
gk718293
gk323181
gk618861
gk678346
gk559522
gk641757
WBVar01693833
WBVar01433745
WBVar02122762
WBVar02122903
WBVar02121703
WBVar02122204

1 Chromosome

WormBase ID Organism Length (nt)
I Caenorhabditis elegans 15072434  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00011655 12366335 12368619 1

3 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrI_12368620..12369188   569 I: 12368620-12369188 Caenorhabditis elegans

16 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  mRNAs that showed decreased expression in 1 cell mebryo comparing to in oocyte, according to RNAseq analysis. Gaussian error propagation. As cutoff for the up-regulated genes authors used log2 fold change > 1 and P < 0.05 and as cutoff for the down-regulated genes authors used log2 fold change < -1 and P < 0.05. WBPaper00045420:fertilization_downregulated_transcript
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:AVE-neuron_L1-larva_expressed
  Coexpression clique No. 203, sre-33-ZK1025.1_8337, on the genome-wide coexpression clique map for the nematode GPL200 platform. All available microarray datasets for the GPL200 platform (Affymetrix C. elegans Genome Array) were obtained from the GEO repository. This included 2243 individual microarray experiments. These were normalized against each other with the software RMAexpress (Bolstad, 2014). Based on these normalized values, Pearsons correlation coefficients were obtained for each probe-probe pair of the 22,620 probes represented on this array type. The resulting list of correlation coefficients was then ranked to generate the ranked coexpression database with information on each probe represented on the GPL200 platform. WBPaper00061527:sre-33-ZK1025.1_8337
  Genes with expression level regulated by genotype (N2 vs CB4856) and age at old adults stage (214 hours at 24 centigrade). For model 2, authors used 100 permutations to estimate the FDR threshold. Per permutation, genotypes and ages were independently randomly distributed, keeping the among-gene structure intact. Then for each spot (23,232) on the array, model 2 was tested. The obtained P-values were used to estimate a threshold for each of the explanatory factors. Authors also used a genome-wide threshold of -log10 P-value = 2, which resembles an FDR of 0.072 and 0.060 for marker and the interaction age-marker for the developing worms and FDR of 0.050 and 0.065 for marker and age-marker for the aging worms. For the physiological age effect, authors used a log10 P-value = 8 in developing worms (0.012 FDR) and -log10 P-value = 6 (0.032 FDR). WBPaper00040858:eQTL_age_regulated_aging
  Genes with expression level regulated by genotype (N2 vs CB4856) at old adults stage (214 hours at 24 centigrade). For model 2, authors used 100 permutations to estimate the FDR threshold. Per permutation, genotypes and ages were independently randomly distributed, keeping the among-gene structure intact. Then for each spot (23,232) on the array, model 2 was tested. The obtained P-values were used to estimate a threshold for each of the explanatory factors. Authors also used a genome-wide threshold of -log10 P-value = 2, which resembles an FDR of 0.072 and 0.060 for marker and the interaction age-marker for the developing worms and FDR of 0.050 and 0.065 for marker and age-marker for the aging worms. For the physiological age effect, authors used a log10 P-value = 8 in developing worms (0.012 FDR) and -log10 P-value = 6 (0.032 FDR). WBPaper00040858:eQTL_regulated_aging
  Genes with expression level regulated by genotype (N2 vs CB4856) at Late reproduction stage (96 hours at 24 centigrade). Authors permuted transcript values and used a genome-wide threshold of log10 P-value = 2, which resembles a false discovery rate (FDR) of 0.0118. WBPaper00040858:eQTL_regulated_reproductive
  Up-regulated genes (fold change > 1.5) in two CoQ-deficient clk-1 mutant strains (e2519, qm30) compared to wild types N2. Fold-changes of intensities were calculated from the arithmetic mean of gene expression values between experimental and corresponding control group. Fold change >= 1.5 was used as cut-off. WBPaper00045774:clk-1_upregulated
  Transcripts down regulated in hpl-2(tm1489) embryo comparing to N2 in tiling array analysis. Oligos from the tiling array were mapped to chromosome coordinates of the exons from Wormbase WS180. Any oligo that mapped to a gene on both the Watson and Crick strands was excluded. The remaining oligos were then grouped together (perfect match and mismatch) into probe sets and written out into an Affymetrix CDF file. The CDF file was converted into an R-package and loaded into R. The expression values were calculated using the justRMA function from Bioconductor. This used a Benjamini and Hochberg false discovery rate correction. WBPaper00040560:hpl-2_embryo_downregulated
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:A-class-motor-neurons_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:AVA-neuron_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:dopaminergic-neurons_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:GABAergic-motor-neurons_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:intestine_L1-larva_expressed
control(maintained under normal lab light (mostly dark, in incubators).) vs EtBr-exposed(maintained under normal lab light (mostly dark, in incubators) and exposed to EtBr (5ug/mL in agar).) at just prior to the third UVC dose (48h). Genes differentially expressed in control vs under EtBr treatment without UVC exposure, at the -1h timepoint. Transcripts were defined as fold-change >1.2, p < 0.05 based on Rosetta Resolver analysis for all pairwise treatment comparisons. The fold-change refers to the second intensity over the first. WBPaper00041939:control_vs_EtBr-exposed_48h
  Genes that showed significantly decreased expression after exposure to adsorbable organic bromine compounds (AOBr) contained in M. aeruginosa batch culture. Differentially expressed genes (DEGs) were identified with a random variance t-test and a significance analysis of microarrays (SAM) test. Genes were considered statistically significant if their p-value was less than 0.05, the false discovery rate less than 0.3, and the fold change compared to control at least <= 0.67 or >=1.5. WBPaper00046853:AOBr_M.aeruginosa-batch-culture_downregulated
  Single-cell RNA-Seq cell group 23_0 expressed in mesoderm. scVI 0.6.0 WBPaper00065841:23_0

4 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr2024258 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1020493 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr2006043 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1156561 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  

5 GO Annotation

Annotation Extension Qualifier
  located_in
  located_in
  located_in
  enables
  enables

0 Homologues

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00011655 12366335 12368619 1

5 Ontology Annotations

Annotation Extension Qualifier
  located_in
  located_in
  located_in
  enables
  enables

0 Regulates Expr Cluster

1 Sequence

Length
2285

1 Sequence Ontology Term

Identifier Name Description
gene  

0 Strains

1 Upstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrI_12365951..12366334   384 I: 12365951-12366334 Caenorhabditis elegans