WormMine

WS295

Intermine data mining platform for C. elegans and related nematodes

Hide

Oops!

http://intermine.wormbase.org/tools/wormmine/service/ is incorrect

Gene :

WormBase Gene ID  ? WBGene00020174 Gene Name  T02H6.4
Sequence Name  ? T02H6.4 Organism  Caenorhabditis elegans
Automated Description  Predicted to be located in extracellular space. Is an ortholog of human VMO1 (vitelline membrane outer layer 1 homolog). Biotype  SO:0001217
Genetic Position  Length (nt)  ? 1036
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00020174

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:T02H6.4.1 T02H6.4.1 546   II: 690049-691084
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:T02H6.4 T02H6.4 546   II: 690049-690241

8 RNAi Result

WormBase ID
WBRNAi00052247
WBRNAi00052250
WBRNAi00018041
WBRNAi00018044
WBRNAi00023295
WBRNAi00023566
WBRNAi00023805
WBRNAi00024093

36 Allele

Public Name
gk964317
gk963801
gk132136
gk132137
gk132138
WBVar01546009
gk963918
gk962554
gk963173
WBVar02120589
WBVar02121360
WBVar02120768
gk490393
gk623230
gk694595
gk556494
gk846447
gk322156
gk775857
gk828224
gk547312
WBVar01943198
WBVar02083962
WBVar00543964
WBVar02101796
WBVar01399536
WBVar01292624
WBVar01292625
WBVar01898200
WBVar01574624

1 Chromosome

WormBase ID Organism Length (nt)
II Caenorhabditis elegans 15279421  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00020174 690049 691084 1

4 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  
Panther orthologue and paralogue predictions  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrII_691085..691144   60 II: 691085-691144 Caenorhabditis elegans

33 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
Bacteria infection: Enterococcus faecalis Genes with increased expression after 24 hours of infection by E.faecalis Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:E.faecalis_24hr_upregulated_TilingArray
  Coexpression clique No. 60, 176662_at-Y53F4B.16, on the genome-wide coexpression clique map for the nematode GPL200 platform. All available microarray datasets for the GPL200 platform (Affymetrix C. elegans Genome Array) were obtained from the GEO repository. This included 2243 individual microarray experiments. These were normalized against each other with the software RMAexpress (Bolstad, 2014). Based on these normalized values, Pearsons correlation coefficients were obtained for each probe-probe pair of the 22,620 probes represented on this array type. The resulting list of correlation coefficients was then ranked to generate the ranked coexpression database with information on each probe represented on the GPL200 platform. WBPaper00061527:176662_at-Y53F4B.16
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:A-class-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:excretory-cell_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:PVD-OLL-neurons_L3-L4-larva_expressed
  Transcripts that showed significantly increased expression in animals lacking P granules by RNAi experiments targeting pgl-1, pgl-3, glh-1 and glh-4, and unc-119-GFP(+), comparing to in control animals, at 2-day post L4 adult hermaphrodite stage. DESeq2, Benjamini-Hochberg multiple hypothesis corrected p-value < 0.05 and fold change > 2. WBPaper00050859:upregulated_P-granule(-)GFP(+)_vs_control_day2-adult
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:bodywall-muscle_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (Young adult all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:CEP-sheath-cells_Day1-adult_expressed
control(maintained under normal lab light (mostly dark, in incubators).) vs EtBr-exposed(maintained under normal lab light (mostly dark, in incubators) and exposed to EtBr (5ug/mL in agar).) at 3 h after the third UVC dose (51h), which is also 3 h after being placed on food. Genes differentially expressed in control vs under EtBr treatment without UVC exposure, at the 3h timepoint. Transcripts were defined as fold-change >1.2, p < 0.05 based on Rosetta Resolver analysis for all pairwise treatment comparisons. The fold-change refers to the second intensity over the first. WBPaper00041939:control_vs_EtBr-exposed_51h
  Genes from N2 animals with significantly increased expression after 72 hours of treatment on growth media with 10uM rapamycin in 2% DMSO. Analysis of gene expression data was carried out with the Affymetrix Transcriptome Analysis Console. Data preprocessing (using RMA normalization) and QC metrics were performed using Affymetrix Expression Console TM and manually inspected afterwards. Expression analysis was carried out for each two pairwise conditions. FDR statistical correction for multiple testing resulted in a slightly lower number of DEGs in most cases. P-value < 0.05 and fold change > 2.0 were used to determine differentially expressed genes. WBPaper00048989:N2_rapamycin_upregulated
  Genes that showed increased expression after exposure to 7.5uM CH3HgCl for 24 hours. Rosetta Resolver was used to identify differentially expressed genes using an error-weighted, 1-way ANOVA with a Bonferroni correction. A 2-fold change in expression, relative to untreated controls, and a p-value < 0.01 was required for a gene to qualify as significantly, differentially expressed. WBPaper00044316:CH3HgCl_7.5uM_upregulated
  Genes down-regulated after 24 hour exposure to colistin. Gene lists were created using a cutoff P-value of < 0.05, 2-fold change. WBPaper00045673:colistin_downregulated
  Transcripts with significantly decreased expression after treatment with 0.1mM paraquat vs. control Comparisons of each genotype were compared to the wild-type using the Empirical Base (Wright & Simon) algorithm and fold changes were represented on a log2 scale. A threshold of p < 0.05 and a fold change of 1.3 (log2) was set to determine differentially expressed targets. WBPaper00045263:0.1mM-paraquat_downregulated
  Transcripts with significantly decreased expression in isp-1(qm150) vs. N2, and in isp-1(qm150)ced-4(n1162) vs. ced-4(n1162). Comparisons of each genotype were compared to the wild-type using the Empirical Base (Wright & Simon) algorithm and fold changes were represented on a log2 scale. A threshold of p < 0.05 and a fold change of 1.3 (log2) was set to determine differentially expressed targets. WBPaper00045263:isp-1(qm150)_downregulated
  Transcripts with significantly decreased expression in nuo-6(qm200) vs. N2, and in nuo-6(qm200);ced-4(n1162) vs. ced-4(n1162). Comparisons of each genotype were compared to the wild-type using the Empirical Base (Wright & Simon) algorithm and fold changes were represented on a log2 scale. A threshold of p < 0.05 and a fold change of 1.3 (log2) was set to determine differentially expressed targets. WBPaper00045263:nuo-6(qm200)_downregulated
  Transcripts with significantly decreased expression under all of these conditions Comparisons of each genotype were compared to the wild-type using the Empirical Base (Wright & Simon) algorithm and fold changes were represented on a log2 scale. A threshold of p < 0.05 and a fold change of 1.3 (log2) was set to determine differentially expressed targets. WBPaper00045263:ProLongevity-mtROS_downregulated
  Expression Pattern Group E, enriched for genes involved in dephosphorylation. The significance (P 0.0001) of the relative age (time) was used to determine if a gene was differentially expressed between the three age (time) groups. The effect of this factor explaining gene expression differences was used to determine if the expression went up or down during the two age/time periods (t1 - t2 and t2 -t3). Authors used a permutation approach to determine the thresholds for the different mapping strategies. For each of the used models for eQTL mapping, authors used 23,000 permutations. For each permutation, authors randomly picked a spot; each spot could only be picked once. The gene expression and relative lifespan values were than randomly distributed over the RILs (and time points) and used for mapping. In this way, authors obtained a threshold for each of the explaining factors. For the single time points, authors used a FDR of 0.01 to adjust for multiple testing. The genome-wide threshold for this FDR is -log10 P = 3.8 for each of the three time points. For the combined models (t1 to t2 and t2 to t3), authors used a genome-wide threshold of -log10 P = 4, which resembles an FDR of 0.006, 0.001, and 0.006 for marker, age, and the interaction between marker and age, respectively. To determine the threshold for the single gene examples, authors used 1000 permutations as in the genome-wide threshold. The difference is that they use the gene under study in all of the permutations. The P-values for the gene specific thresholds were determined at FDR = 0.05. WBPaper00036286:Pattern_E
  spermatogenesis-enriched Comparisons were made between genotypes by subtracting the mean log value of one ratio from another, and the significance of the difference was evaluated using Student t-test for two populations. For the fem-3(gf) versus fem-1(lf) direct comparison, authors performed the same analysis, except they used a Students t-test for one population. Author chose a combination of a twofold difference with a t value exceeding 99% confidence (P < 0.01), because these criteria allowed the inclusion of essentially all genes that had previously been identified as germline-enriched in a wt/glp-4 hermaphrodite comparison. Additionally, requiring a twofold difference reduced false positives, as the number of genes with two-fold difference and a P<0.01 only included ~100 genes more than with P < 0.001, and almost all genes showed germline expression by in situ hybridization. [cgc6390]:spermatogenesis-enriched
  Genes that showed significantly decreased expression after exposure to adsorbable organic bromine compounds (AOBr) contained in M. aeruginosa batch culture. Differentially expressed genes (DEGs) were identified with a random variance t-test and a significance analysis of microarrays (SAM) test. Genes were considered statistically significant if their p-value was less than 0.05, the false discovery rate less than 0.3, and the fold change compared to control at least <= 0.67 or >=1.5. WBPaper00046853:AOBr_M.aeruginosa-batch-culture_downregulated
  Genes in the bottom 10% of expression level across the triplicate L3 samples. To generate the top10 and bottom10 gene sets, authors ranked all genes by mean expression array signal intensity across the three replicates, then took the top and bottom deciles (1,841 genes each) to represent genes with high and low expression. To generate the top10 and bottom10 gene sets, authors ranked all genes by mean expression array signal intensity across the three replicates, then took the top and bottom deciles (1,841 genes each) to represent genes with high and low expression. WBPaper00032528:L3_depleted
  Genes predicted to be downregulated more than 2.0 fold in rde-3(ne298) mutant worms as compared to wild-type animals (t-test P-value < 0.05). A t-test (5% confidence) was applied to the triplicate sample data for each transcript in each mutant to identify genes significantly elevated or decreased compared with the wild type. WBPaper00027111:rde-3(ne298)_downregulated
  Genes that showed significantly decreased expression level in rsr-2(RNAi) animals comparing to in gfp(RNAi) control. Fold change > 1.2 or < 0.8. WBPaper00042477:rsr-2(RNAi)_downregulated_TilingArray
  Coexpression clique No. 273, C01G10.14-dct-9_3227, on the genome-wide coexpression clique map for the nematode GPL200 platform. All available microarray datasets for the GPL200 platform (Affymetrix C. elegans Genome Array) were obtained from the GEO repository. This included 2243 individual microarray experiments. These were normalized against each other with the software RMAexpress (Bolstad, 2014). Based on these normalized values, Pearsons correlation coefficients were obtained for each probe-probe pair of the 22,620 probes represented on this array type. The resulting list of correlation coefficients was then ranked to generate the ranked coexpression database with information on each probe represented on the GPL200 platform. WBPaper00061527:C01G10.14-dct-9_3227
Fungi infection: Candida albicans, heat-killed C. albicans versus heat-killed E. coli. Differentially expressed genes in the following exposure comparison :heat-killed C. albicans versus heat-killed E. coli. Data were analyzed using Resolver Gene Expression Data Analysis System, version 5.1 (Rosetta Inpharmatics). Three biologic replicates per condition were normalized using the Resolver intensity error model for single color chips. Conditions were compared using Resolver to determine the fold change between conditions for each probe set and to generate a P value using a modified t-test. Probe sets were considered differentially expressed if the fold change was 2-fold or greater (P < 0.01). When comparing datasets, the overlap expected by chance alone was determined in 50 groups of randomly selected C. elegans genes using Regulatory Sequence Analysis Tools (http://rsat.ulb.ac.be/rsat/), a technique that has been used for similar analyses. P values were determined using chi-square tests. WBPaper00039851:HK_C_albicans_vs_HK_OP50
  Transcripts that showed significantly increased expression in drh-3(rrr2) comparing to in N2. edgeR, log2 fold change > 2 or < -2. WBPaper00053888:drh-3(rrr2)_upregulated
  Transcripts that showed significantly increased expression in dcr-1(m9375) glp-1(e2144) comparing to glp-1 (e2144) at 1-day post L4 adult hermaphrodite animals. Two-way ANOVA p < 0.05, fold change > 1.5. WBPaper00059490:dcr-1(m9375)_upregulated
Mating for 24 hours with oleic acid supplement. Transcripts that showed significantly increased expression after glp-1(e2141) hermaphrodites mated for 24 hours with oleic acid supplement. Two-class SAM analysis WBPaper00061572:oleic-acid-specific_mating_upregulated
  Genes up regulated in nhr-114(RNAi) comparing to glp-1(q224ts). Differentially expressed genes had a fold change cutoff of 2.0 and an unpaired t test p value cutoff of 0.05 for WT+Trp versus WT and 0.01 for nhr-114 versus glp-1. WBPaper00042194:nhr-114(RNAi)_upregulated
  Genes up regulated in aak-2 over expression line uthIs202[Paak-2c To identify genes that were significantly differentially expressed between each mutant and the control, linear modelling and empirical Bayes analysis was performed using the limma package. Limma computes an empirical Bayes adjustment for the t-test (moderated t-statistic), which is more robust than the standard two-sample t-test comparisons. To correct for multiple testing, Benjamin and Hochbergs method to control for false discovery rate was used. Genes with an adjusted P value of 0.05 or smaller and a fold-change in expression larger than twofold were considered differentially expressed. WBPaper00038172:aak-2overexpression_up_regulated

3 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr2023979 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1155878 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr1017632 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  

1 GO Annotation

Annotation Extension Qualifier
  located_in

3 Homologues

Type
orthologue
orthologue
orthologue

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00020174 690049 691084 1

1 Ontology Annotations

Annotation Extension Qualifier
  located_in

0 Regulates Expr Cluster

1 Sequence

Length
1036

1 Sequence Ontology Term

Identifier Name Description
gene  

0 Strains

0 Upstream Intergenic Region