WormMine

WS297

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00019416 Gene Name  fbxb-44
Sequence Name  ? K05F6.5 Brief Description  K05F6.5 encodes an unusual paraoxonase-like protein with an N-terminal F-box domain; it is homologous to the human PARAOXONASE 1 gene (PON1, OMIM:168820), which in some allelic forms is associated with susceptibility to coronary artery disease.
Organism  Caenorhabditis elegans Automated Description  Enriched in several structures, including I5 neuron; RME; ciliated neurons; enteric muscle; and head mesodermal cell based on tiling array and single-cell RNA-seq studies. Is affected by several genes including cyc-1; rsr-2; and ash-2 based on microarray; tiling array; and RNA-seq studies. Is affected by twenty chemicals including hydrogen sulfide; rotenone; and bisphenol A based on microarray and RNA-seq studies. Is predicted to encode a protein with the following domains: Zygotic Embryogenesis-Associated Protein; F-box domain; F-box associated domain, type 2; and F-box associated.
Biotype  SO:0001217 Genetic Position  II :-15.4029 ±0.002662
Length (nt)  ? 1011
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00019416

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:K05F6.5.1 K05F6.5.1 958   II: 1538889-1539899
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:K05F6.5 K05F6.5 939   II: 1538891-1538973

3 RNAi Result

WormBase ID
WBRNAi00050003
WBRNAi00050004
WBRNAi00016640

105 Allele

Public Name
WBVar02124326
WBVar02123182
WBVar02121537
WBVar02123791
WBVar00091177
gk964317
gk963801
WBVar02122524
WBVar02120604
WBVar02121124
WBVar02124543
WBVar02120776
WBVar02121946
WBVar02122351
gk962523
WBVar02124155
WBVar00091052
gk963314
gk133956
gk133958
gk133957
WBVar01546134
WBVar01716294
WBVar00039336
WBVar00039331
WBVar00039346
WBVar00039341
WBVar00039351
WBVar02077440
WBVar02079803

1 Chromosome

WormBase ID Organism Length (nt)
II Caenorhabditis elegans 15279421  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00019416 1538889 1539899 1

2 Data Sets

Name URL
WormBaseAcedbConverter  
C. elegans genomic annotations (GFF3 Gene)  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrII_1539900..1540927   1028 II: 1539900-1540927 Caenorhabditis elegans

141 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
adult vs dauer larva Transcripts that showed differential expression in adult vs dauer lava in N2 animals at 20C. N.A. WBPaper00050488:adult_vs_dauer_regulated_N2_20C
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:AVE-neuron_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:bodywall-muscle_L1-larva_expressed
  Transcripts that showed significantly increased expression in eat-2(ad465);dve-1(RNAi) animals comparing to eat-2(ad465) animals injected with empty vector. fold change > 2, FDR < 0.01 WBPaper00067391:dve-1(RNAi)_upregulated_eat-2(ad465)
Bacteria infection: Staphylococcus aureus Transcripts that showed significantly decreased expression in animals experimentally colonised by a wild microbiota community and infected by the widespread animal pathogen, Staphylococcus aureus, comparing to animals not colonized by microbiota and not infected by pathogen. DeSeq2 (v. 1.42.0), Wald analyses testing against a null hypothesis of < |1.5|-fold change in gene expression between treatments (BenjaminiHochberg adjusted false detection rate of p <= 0.05. WBPaper00067479:Microbiota-Pathogen_vs_control_downregulated
Bacteria infection: Staphylococcus aureus Transcripts that showed significantly decreased expression in animals experimentally colonised by a wild microbiota community and infected by the widespread animal pathogen, Staphylococcus aureus, comparing to animals colonized by microbiota but not infected by pathogen. DeSeq2 (v. 1.42.0), Wald analyses testing against a null hypothesis of < |1.5|-fold change in gene expression between treatments (BenjaminiHochberg adjusted false detection rate of p <= 0.05. WBPaper00067479:Microbiota-Pathogen_vs_Microbiota_downregulated
25C vs. 20C Transcripts that showed significantly increased expression in 1-day post L4 adult hermaphrodite N2 grown at 25C, comparing to in N2 animals grown at 20C. CuffDiff, fold change > 2. WBPaper00065096:25C_vs_20C_upregulated
  Transcripts that showed significantly increased expression in 10-days post L4 adult hermaphrodite N2 grown at 20C, comparing to in 1-day post L4 adult hermaphrodite N2 animals grown at 20C. CuffDiff, fold change > 2. WBPaper00065096:Day10_vs_Day1_upregulated
  Transcripts that showed significantly decreased expression in 10-days post L4 adult hermaphrodite npr-8(ok1439) animals grown at 20C, comparing to in N2 animals. CuffDiff, fold change > 2. WBPaper00065096:npr-8(ok1439)_downregulated_Day10_20C
  Genes with increased RNA expression after 24 hours rotenone treatment EdgeR provides statistical routines for determining differential expression in digital gene expression data using a model based on the negative binomial distribution. The resulting p-values were adjusted using the Benjamini and Hochbergs approach for controlling the false discovery rate (FDR). Transcripts with an adjusted p-value smaller 0.05 were assigned as differentially expressed. WBPaper00044426:rotenone_24h_upregulated
Bacteria: B.subtilis Transcripts that showed significantly decreased expression when animals were fed by probiotic bacteria strain B.subtilis PXN21 comparing to animals fed with OP50 from L1 till day 1 adult. edgeR 3.16.5, FDR < 0.05, fold change > 2. WBPaper00059117:B.subtilis_downregulated
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L2-larva_expressed
  Transcripts that showed significantly decreased expression in tetraploid N2 comparing to diploid N2 animals at L4 larva stage. DESeq2 R package (1.20.0), fold change > 2, and FDR < 0.05. WBPaper00066110:tetraploid_vs_diploid_downregulated
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:intestine_L2-larva_expressed
  Transcripts that showed significantly decreased expression in eat-2(ad1116) comparing to in N2 at 3-days post L4 adult hermaphrodite animals. DESeq2(v1.14.1), fold change > 2, p-value < 0.05 WBPaper00055354:eat-2(ad1116)_downregulated
  Transcripts that showed significantly decreased expression after animals were treated with 100uM Psora and 250uM Allantoin from day 1 to day 3 adult hermaphradite. DESeq2(v1.14.1), fold change > 2, p-value < 0.05 WBPaper00055354:Psora-Allantoin_downregulated
  Transcripts that showed significantly decreased expression after animals were treated with 100uM Rapamycin and 50mM Metformin from day 1 to day 3 adult hermaphradite. DESeq2(v1.14.1), fold change > 2, p-value < 0.05 WBPaper00055354:Rapamycin-Metformin_downregulated
  Transcripts that showed significantly decreased expression after animals were treated with 100uM Rapamycin and 50uM Rifampicin from day 1 to day 3 adult hermaphradite. DESeq2(v1.14.1), fold change > 2, p-value < 0.05 WBPaper00055354:Rapamycin-Rifampicin_downregulated
  Transcripts that showed significantly decreased expression after animals were treated with 50uM Rifampicin and 250uM Allantoin from day 1 to day 3 adult hermaphradite. DESeq2(v1.14.1), fold change > 2, p-value < 0.05 WBPaper00055354:Rifampicin-Allantoin_downregulated
  Transcripts that showed significantly decreased expression after animals were treated with 50uM Rifampicin from day 1 to day 3 adult hermaphradite. DESeq2(v1.14.1), fold change > 2, p-value < 0.05 WBPaper00055354:Rifampicin_downregulated
  Transcripts that showed significantly decreased expression in set-2(tm1630) animals at embryo stage, comparing to in N2 animals. DESeq2 (v2.1.8.3) was used to determine DE genes and to generate principal component and scatter plots. DE genes with FDR < 0.05 were analysed using g:Profiler with Bonferroni correction. WBPaper00060014:set-2(tm1630)_downregulated
  Transcripts that showed significantly decreased expression in the neurons of bcat-1(RNAi) animals at 5-days post L4 adult hermaphrodite stage, comparing to animals injected with empty vector. DESeq2. FDR < 0.05. WBPaper00060459:bcat-1(RNAi)_downregulated
  Transcripts that showed significantly decreased expression in nhl-2(ok818) comparing to in N2 at 25C. EdgeR, FDR < 0.05, fold change < 0.5. WBPaper00055971:nhl-2(ok818)_25C_upregulated
Bacteria ibfection: Pseudomonas aeruginosa PA14 Transcripts that showed significantly decreased expression in N2 animals exposed to PA14, comparing to in N2 animals grown on OP50. fold change > 2, FDR < 0.05 WBPaper00066858:PA14_downregulated_N2
  Transcripts that showed significantly increased expression in animals lacking P granules by RNAi experiments targeting pgl-1, pgl-3, glh-1 and glh-4, and unc-119-GFP(+), comparing to in control animals, at 2-day post L4 adult hermaphrodite stage. DESeq2, Benjamini-Hochberg multiple hypothesis corrected p-value < 0.05 and fold change > 2. WBPaper00050859:upregulated_P-granule(-)GFP(+)_vs_control_day2-adult
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L1-larva_expressed
  Genes found to be regulated by low-copy overexpression of sir-2.1 with p < 0.014. N.A. WBPaper00026929:sir-2.1_overexpression_regulated
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:hypodermis_L1-larva_expressed
  Transcripts that showed significantly increased expression in sin-3(tm1276) comparing to in N2 at early embryo stage. DESeq2, FDR < 0.05 WBPaper00058691:sin-3(tm1276)_upregulated

5 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr2011645 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1153699 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr1038387 Tiling arrays expression graphs  
    Expr1026181 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr2029884 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  

0 GO Annotation

0 Homologues

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00019416 1538889 1539899 1

0 Ontology Annotations

0 Regulates Expr Cluster

1 Sequence

Length
1011

1 Sequence Ontology Term