|
|
Expr4504
|
MRG-1 is highly enriched in nuclei and concentrated on chromatin. In early embryos, MRG-1 is present in the nuclei of all blastomeres. In late embryos and young larvae, MRG-1 staining is higher in the nuclei of the two primordial germ cells, Z2 and Z3, than in somatic blastomeres. In larvae and adults, MRG-1 staining is seen primarily in the nuclei of germ cells, although it is also faintly visible in the nuclei of several somatic cell types, including intestinal cells. In the adult germ line, all germ nuclei in the mitotic and meiotic regions are stained. These results demonstrate that MRG-1 is present in the germ line at all stages of development and is maternally loaded into embryos. In addition, zygotically expressed MRG-1 is produced in all cells by at least the 100-cell stage; it accumulates to higher levels in the primordial germ cells than in somatic tissues. |
Expressed in nuclei. |
INX-3 detected during very early stages of development is likely to be maternally derived, since INX-3::GFP expressed zygotically is first detected by anti-GFP antibodies at approximately the 28-cell stage. |
|
Expr2546
|
At the late first larval (L1) stage, INX-3 is present transiently in some newly generated cells. The postembryonic motor neurons, descendants of the Pn.a cells, express INX-3 briefly. INX-3 is also detected briefly in cells of the first two divisions of the M blast cell, coelomocytes, and sex muscles. By the comma stage, corresponding to early embryonic morphogenesis, INX-3 is still broadly expressed, but the pattern of expression becomes more restricted as morphogenesis proceeds. Because INX-3 is localized principally in puncta at plasma membranes, it is hard to assign expression unambiguously to individual cells; however, expression in major cell types or organs is clear. Double-labeling embryos with anti-INX-3 and MH27, a mAb that binds AJM-1 in apical epithelial intercellular junctions, indicated that, at the comma stage, INX-3 is localized to the developing intestine, pharynx, and hypodermis (epidermis), at minimum. During late morphogenesis, from the 3-fold stage until hatching, INX-3 is found principally in the posterior pharynx (isthmus and terminal bulb), at the anteriormost tip of the pharynx, in the region of the posterior intestine (probably intestinal muscles or rectal cells) and in the hypodermis. Expression in these tissues continues throughout development into adulthood with the exception of the hypodermis. Hypodermal expression is strong at the time of hatching, and INX-3 is present in plaques at the intercellular boundaries between most hypodermal cells except at the ventral midline between paired P cells; however, INX-3 becomes undetectable in the hypodermis shortly after hatching. INX-3 protein is first detected at the embryonic 2-cell stage. It is localized to small plaques at cellcell interfaces and can be detected throughout early embryogenesis in a pattern suggesting that most or all cells express inx-3. In adults, INX-3 is reduced such that only a few plaques are associated with vulval muscles. In the late L3 stage, INX-3 expression begins in the sex myoblasts (SMs). Expression continues in SM descendants so that all 16 sex muscles stain with anti-INX-3 in early L4 animals, confirming results obtained with an inx-3::gfp translational fusion gene. |
At embryonic 2-cell stage, localized to small plaques at cellcell interfaces. At the late first larval (L1) stage, INX-3 is present transiently in some newly generated cells, and in cells of the first two divisions of the M blast cell, coelomocytes, and sex muscles. INX-3 is readily detectable in the cytoplasm of these cells, as well as in cell-surface plaques. By the comma stage, INX-3 is localized principally in puncta at plasma membranes. At comma stage, within intestinal cells, whose large size allows easy visualization of subcellular location, INX-3 is localized to the basal portion of lateral membranes. |
early embryo (author) = blastula embryo (curator) --wjc. |
|
Expr1736
|
In early embryos, MES-3 protein is present in the nuclei of all cells. As embryogenesis progresses, staining gradually diminishes in somatic cells. In late embryos and L1 larvae, MES-3 is detectable in some somatic cells but is most prominent in Z2 and Z3, the primordial germ cells. The nuclear staining of MES-3 is reduced below detection in any of the four nonconditional alleles of mes-3. In wild type adults, MES-3 is most prominent in germline nuclei and is occasionally barely detectable in intestinal nuclei. In the germline, it is present at low levels in distal mitotic nuclei, undetectable in the pachytene region of the distal arm, and present at elevated levels in the proximal meiotic region and in oocytes. |
MES-3 is localized predominantly in nuclei. The immunolocalization pattern of MES-3 was analyzed in embryos, using confocal microscopy. Cells at different stages of mitosis were stained by affinity-purified anti-MES-3 antibody and anti-penta-acetylated H4 antibody to visualize chromosomes. During interphase and prometaphase, when condensed chromosomes are clearly visible in nuclei, MES-3 protein is not obviously concentrated on chromosomes; instead it appears evenly distributed in the nucleoplasm. During metaphase and early anaphase, when nuclear envelopes are broken down, some MES-3 protein is detectably associated with chromosomes. |
|
|
Expr2579
|
SCC-1/COH-2 was expressed in germ cells throughout the development, including the adult stage. SCC-1/COH-2 was detected in virtually all mitotic germ nuclei. Similarly to somatic cells in embryos, SCC-1/COH-2 was dispersed in the cytoplasm at mitotic prometaphase and was absent from the condensed anaphase chromosomes in germ cells. In female germ cells that entered meiotic prophase in adult hermaphrodites, SCC-1/COH-2 was observed uniformly in the nuclei. It was unclear whether SCC-1/COH-2 localized to the condensed meiotic chromosomes, because of the strong SCC-1/COH-2 signal emitted from the nucleoplasm. SCC-1/COH-2 was detected also in male germ cells at mitosis and meiosis, but it was not detectable in mature sperm. SCC-1/COH-2 was strongly expressed in virtually all cells in early embryos, but its expression was gradually weakened, and the signal could hardly be detected in late embryos, in which cell division was ceased almost completely. Strong nuclear signals of SCC-1/COH-2 reappeared in larvae, though they were limited to a subset of cells. SCC-1/COH-2 was detectable only in cells that were going to divide. For example, in an L1 larva, intense SCC-1/COH-2 signals were detected in the 14 hypodermal V lineage cells, which divide synchronously. The SCC-1/COH-2 signal was dispersed and not detectable on condensed chromosomes, as observed in embryos of an intermediate stage. In a slightly older L1 larva, expression of SCC-1/COH-2 was seen in 22 P lineage cells to constitute the ventral nerve cord and in four Q lineage cells to produce posterior neuronal cells, all of which divide at the same time. In this L1 larva, no signal was detected in the V lineage cells, suggesting that the SCC-1/COH-2 protein is present only for a short time in the cell cycle, and likely to be degraded quickly after cell division. Larvae of later stages also expressed SCC-1/COH-2 in dividing cells: in an L3 larva, SCC-1/COH-2 was detected in four M lineage cells to produce the uterine and vulval muscle cells and in 10 P lineage vulval precursor cells, which divide concurrently. The embryos were stained with both anti-SCC-1/COH-2 antibodies and an antibody against a component of the nuclear pore complexes. The SCC-1/COH-2 signal was evenly distributed within the nuclear envelope except for the chromosomal region, suggesting that SCC-1/COH-2 molecules dissociated from the chromosomes at metaphase were trapped by the nuclear envelope. Consistently with this interpretation, the SCC-1/COH-2 staining around the metaphase plate was no longer seen at later stages of embryogenesis involving >30 cells, where nuclear envelope is known to break down before metaphase. SCC-1/COH-2 was dispersed into the whole cytoplasm of metaphase cells at these stages. |
SCC-1/COH-2 seemed to localize to the chromosomes in a cell cycle-dependent manner. In interphase, SCC-1/COH-2 was seen throughout the nucleus, overlapping largely with DNA. At mitotic prophase, SCC-1/COH-2 started to separate from condensing chromosomes, and it was not detected on the chromosomes at prometaphase and metaphase. At metaphase, the SCC-1/COH-2 signal seemed as if surrounding the metaphase plate, although it was possible that a small amount of SCC-1/COH-2 was remaining on the metaphase chromosomes but escaped detection, because cohesin is reported to become detectable on metaphase chromosomes only after detergent extraction of soluble background in other metazoans. The SCC-1/COH-2 signal was then dispersed in the cytoplasm at anaphase. At telophase, the SCC-1/COH-2 protein began to reaccumulate on the chromosomes. |
early embryo(author) = blastula embryo(curator). |
|
Expr550
|
PAL-1 protein was detected in all P1 descendants from the 4-cell through the 24-cell stage. Staining was variable at the 24-cell stage. At the 28-cell stage, PAL-1 was detected in all P2 descendants. |
|
The antibodies recognized both isoforms of GLD-1. early embryo(author) = blastula embryo(curator). |
|
Expr583
|
GLD-1 is first detected in EMS and P2 at the 4-cell stage. It remains in the germ line throughout embryogenesis, but is lost from MS, E, C and D when these somatic cells divide. |
|
Picture: Fig. 5. The same pattern was seen with two separate antibodies raised against distinct PLP-1 peptides, and both nuclear and P granule expression was largely eliminated in plp-1 (RNAi) embryos, confirming their specificity. |
|
Expr8706
|
Immunoreactive PLP-1 localizes to the nuclei of all blastomeres beginning by the two-cell stage of embryogenesis, implying that PLP-1 is a maternally encoded transcription factor. It is also present in the germline-specific P granules of early embryos. |
PLP-1 is transiently asymmetrically localized during telophase of the dividing EMS cell (observed in 12 embryos at the correct stage), with higher levels of the protein in the chromatin of the future E cell nucleus and low or undetectable levels in that of MS. A similar transient asymmetry in PLP-1 levels was observed at many divisions throughout early development, starting at cleavage of the zygote, with higher levels seen in the cytoplasm and forming nucleus of the posterior daughter, P1 (observed in 5 embryos). The anteroposterior asymmetry in PLP-1 was also observed in the AB lineage during the division of the AB granddaughters (observed in 7 embryos): for example, PLP-1 is higher in the chromatin of the posterior daughter ABalp than that of its anterior sister ABala. In all cases, the asymmetry was observed only during telophase and at the time that nuclei were reassembling after cell division; the staining was symmetric at all other times. PLP-1 was always seen at higher levels in the forming nuclei of the posterior daughters. |
|
|
Expr3226
|
A pal-1 promoter::YFP fusion is expressed exclusively in the C and D lineage of early wild-type embryos. |
|
|
|
Expr2551
|
In situ hybridization analysis revealed that spn-4 mRNA was abundant in early embryos. The mRNA was present at the same level in all blastomeres up to the 4-cell stage. Afterwards, it persists in the P blastomere and its sister, and then just the germ lineage. The mRNA was also present in the adult gonads. |
|
|
|
Expr2947
|
In late embryos (after the comma stage) matefin staining decreased in all somatic cells but intensified in the nuclear envelopes of the two primordial germ cells, Z2 and Z3. The identity of Z2 and Z3 cells was verified by double labeling with antibodies against PGL-1, which is specific to germ cells. Throughout larva stages L1-L4 and in adults, matefin was present only in germ cells. Matefin signal declined during spermatogenesis and was undetectable in sperm. |
Matefin was detected at the nuclear envelope of all early embryonic cells. |
sdz-4 = C32B5.16 |
|
Expr3146
|
Expressed ubiquitously starting at the 12-cell stage. |
|
sdz-33 = Y56A3A.14 |
|
Expr3147
|
Expressed ubiquitously starting at the 12-cell stage. |
|
sdz-36 = ZK1251.7 |
|
Expr3148
|
Expressed ubiquitously starting at the 12-cell stage. |
|
Maternal effect. early embryo(author) = blastula + gastrulating embryo(curator). |
|
Expr576
|
In adult hermaphrodites, mex-1 mRNA is detected in the syncytial core of the gonad and in oocytes at all stages of maturation. In 1 and 2-cell stage embryos, mex-1 mRNA is distributed uniformly, but then appears to be degraded rapidly in somatic blastomeres but remains in germ line blastomeres in subsequent divisions. After P4 divides, mex-1 mRNA is not detected. |
|
|
|
Expr2575
|
In situ hybridization analysis revealed that spn-4 mRNA was abundant in early embryos. The mRNA was present at the same level in all blastomeres up to the 4-cell stage. Afterwards, it persists in the P blastomere and its sister, and then just the germ lineage. The mRNA was also present in the adult gonads. |
|
|
|
Expr14961
|
In the one-cell embryo, maternally provided ZF1::GFP::PKC-3 enriched at the anterior cortex, like endogenous PKC-3 (TABUSE et al. 1998), but by the 24-cell stage ZF1::GFP::PKC-3 had degraded to undetectable levels in somatic cells. Zygotically expressed ZF1::GFP::PKC-3 reappeared during the middle stages of embryogenesis at the apical surfaces of differentiating epithelia, including the epidermis, pharynx, and intestine, where itcolocalized with PAR-6. |
|
Reporter gene fusion type not specified. T14G12.4 = fkh-2 |
|
Expr1472
|
expression was observed in the descendants of the D founder cell. T14G12.4::gfp expression was also detected in many other cells more anteriorly that probably overlap with, but are not identical to, those of the AB founder cell lineage that express the pes-1::gfp fusion gene. |
|
Reporter gene fusion type not specified. |
|
Expr1601
|
Expressed on the surface of motile cells and pioneering neurons whose migrations are affected in unc-40 mutants. UNC-40/GFP becomes detectable on the surface of all cells at the onset of gastrulation (~100 min after first cleavage), and then gradually decreases. By the end of gastrulation (~290 min), the protein is barely detectable on all cells. In the neurula (~400 min), UNC-40/GFP is highly expressed on ventral cord motorneurons, including cell bodies and axons, undergoing axonogenesis. Additional neurons express UNC-40/GFP soon after, but are difficult to identify in the elongating neurula. This expression generally persists into the first larval stage and beyond, allowing unambiguous identification of most cells. Similar expression patterns were observed using unc-40 upstream regulatory sequences to direct cytoplasmic expression of soluble GFP. In first stage larvae, ventral epidermoblasts P1/2 to P11/12 (Pn cells) express UNC-40/GFP as they undergo planar movements within the epithelium. Similarly, neuroblasts QL and QR and their descendants express UNC-40/GFP as they migrate longitudinally along the epidermis. In second stage and later larvae, the distal tip cells of hermaphrodites express UNC-40/GFP as they migrate along the body wall. |
cytoplasmic expression |
See Expr746 for in situ data. This information was extracted from published material (Archana Sharma-Oates, Andrew Mounsey and Ian A. Hope). |
|
Expr698
|
High levels in P2 and EMS (posterior nuclei) at the 4-cell stage. From 4-cell to the 24-cell stage, PAL-1 is detected in all descendants of both P2 and EMS. The PAL-1 antibody stained the nuclei throughout the cell cycle and was localized to the condensed chromosomes during mitosis. At the 24-cell stage, the level of staining intensity increased in the two C descendants, Ca and Cp. In 28-cell embryos strong staining was observed in the four C descendants and lower levels of staining was also observed in D and P4. At the 28-cell stage expression was stronger in P2 than in EMS descendants. |
|