WormMine

WS295

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00015517 Gene Name  cepr-104.2
Sequence Name  ? C06A8.8 Organism  Caenorhabditis elegans
Automated Description  Predicted to be located in cilium. Human ortholog(s) of this gene implicated in Joubert syndrome 25 and autosomal recessive intellectual developmental disorder 77. Is an ortholog of human CEP104 (centrosomal protein 104). Biotype  SO:0001217
Genetic Position  Length (nt)  ? 6650
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00015517

Genomics

8 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:C06A8.8g.1 C06A8.8g.1 1116   II: 7765368-7767779
Transcript:C06A8.8a.1 C06A8.8a.1 1515   II: 7765545-7772017
Transcript:C06A8.8f.1 C06A8.8f.1 693   II: 7765848-7769394
Transcript:C06A8.8e.1 C06A8.8e.1 891   II: 7765848-7769754
Transcript:C06A8.8c.1 C06A8.8c.1 798   II: 7766781-7769768
Transcript:C06A8.8b.1 C06A8.8b.1 521   II: 7766792-7767782
Transcript:C06A8.8h.1 C06A8.8h.1 1086   II: 7766800-7772017
Transcript:C06A8.8d.1 C06A8.8d.1 309   II: 7767058-7769394
 

Other

8 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:C06A8.8e C06A8.8e 891   II: 7765848-7765871
CDS:C06A8.8c C06A8.8c 507   II: 7767058-7767120
CDS:C06A8.8h C06A8.8h 828   II: 7767058-7767120
CDS:C06A8.8d C06A8.8d 309   II: 7767058-7767120
CDS:C06A8.8a C06A8.8a 1212   II: 7765848-7765871
CDS:C06A8.8b C06A8.8b 252   II: 7767058-7767120
CDS:C06A8.8f C06A8.8f 693   II: 7765848-7765871
CDS:C06A8.8g C06A8.8g 636   II: 7765848-7765871

5 RNAi Result

WormBase ID
WBRNAi00039843
WBRNAi00010269
WBRNAi00010270
WBRNAi00028548
WBRNAi00028549

85 Allele

Public Name
gk963801
gk963053
gk962682
WBVar01695635
WBVar01438566
WBVar01438564
WBVar01375811
h6947
h3059
gk435216
gk545105
gk503691
gk661315
gk794584
gk725849
gk530104
gk662169
gk474080
gk662621
gk665456
gk677282
gk342103
gk931459
gk669481
gk600465
gk398189
gk821015
gk828300
gk648101
gk360162

1 Chromosome

WormBase ID Organism Length (nt)
II Caenorhabditis elegans 15279421  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00015517 7765368 7772017 -1

4 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  
Panther orthologue and paralogue predictions  

0 Downstream Intergenic Region

139 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Transcripts that showed significantly increased expression in L1 neural cells comparing to in adult neural cells. DESeq2 (v1.18.1) fold change > 2, P-adj<0.05, using BenjaminiHochberg correction. WBPaper00060811:L1_vs_adult_upregulated_neural
  Transcripts of coding genes that showed significantly decreased expression in muscle. DESeq2 (version 1.24.0). Transcripts with a false-discovery rate adjusted p-value less than 0.05 were considered significantly differentially expressed. WBPaper00062325:muscle_depleted_coding-RNA
  Transcripts expressed in neuronal cells, by analyzingfluorescence-activated cell sorted (FACS) neurons. DESeq. False discovry rate (FDR) < 0.1. WBPaper00048988:neuron_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L1-larva_expressed
adult vs dauer larva Transcripts that showed differential expression in adult vs dauer lava in N2 animals at 20C. N.A. WBPaper00050488:adult_vs_dauer_regulated_N2_20C
  Neuronally enriched transcripts according to a comparison of neuronal nuclei IP samples to total nuclei using isolation of nuclei from tagged specific cell types (INTACT) technology. DESEQ2, fold change > 2 and FDR < 0.01. WBPaper00062103:neuron_enriched
Bacteria: E.faecalis strain OG1RF Transcripts that showed significantly increased expression after infection by E. faecalis OG1RF. Ballgown was used to calculate differential expression of genes using FPKM data and to generate tables with fold change and P values. Genes were shortlisted with a cutoff of 2-fold change and P values of less than 0.05. WBPaper00059754:E.faecalis_OG1RF_upregulated
  Transcripts that showed significantly increased expression glp-1(e2141); TU3401 animals comparing to in TU3401 animals. Fold change > 2, FDR < 0.01. WBPaper00065993:glp-1(e2141)_upregulated
Bacteria infection: Enterococcus faecalis Genes with increased expression after 24 hours of infection by E.faecalis Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:E.faecalis_24hr_upregulated_TilingArray
  Transcripts expressed in the epithelial tissues surrounding the pharynx that includes the arcade and intestinal valve (AIV) cells, according to PAT-Seq analysis using Pbath-15-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:arcade_intestinal-valve_expressed
  Transcripts expressed in hypodermis, according to PAT-Seq analysis using Pdpy-7-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:hypodermis_expressed
  Transcripts expressed in intestine, according to PAT-Seq analysis using Pges-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:intestine_expressed
  Transcripts expressed in pharynx, according to PAT-Seq analysis using Pmyo-2-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:pharynx_expressed
  Genes with expression level regulated by genotype (N2 vs CB4856) and age at old adults stage (214 hours at 24 centigrade). For model 2, authors used 100 permutations to estimate the FDR threshold. Per permutation, genotypes and ages were independently randomly distributed, keeping the among-gene structure intact. Then for each spot (23,232) on the array, model 2 was tested. The obtained P-values were used to estimate a threshold for each of the explanatory factors. Authors also used a genome-wide threshold of -log10 P-value = 2, which resembles an FDR of 0.072 and 0.060 for marker and the interaction age-marker for the developing worms and FDR of 0.050 and 0.065 for marker and age-marker for the aging worms. For the physiological age effect, authors used a log10 P-value = 8 in developing worms (0.012 FDR) and -log10 P-value = 6 (0.032 FDR). WBPaper00040858:eQTL_age_regulated_aging
  Transcripts that showed significantly decreased expression in day 3 adult hermaphrodite comparing to in L4 larva daf-16(mu86);glp-1(e2141) animals. Fold change > 2, FDR < 0.05 WBPaper00064088:Day-3-adult_vs_L4_downregulated_daf-16(mu86);glp-1(e2141)
Bacteria infection: Photorhabdus luminescens Genes down-regulated in animals infected with Photorhabdus luminescens compared to the E. coli OP50 control after 24h of infection. MAANOVA and BRB-Array-Tools. WBPaper00030985:Photorhabdus_luminescens_downregulated
  Transcripts that showed significantly increased expression in rrf-3(pk1426) comparing to in N2 at embryo stage. DESeq2v 1.18.1, fold change > 1.5, adjusted p-value < 0.01. WBPaper00056169:rrf-3(pk1426)_upregulated_embryo
  Transcripts that showed significantly increased expression in sin-3(tm1276) comparing to in N2. DESeq2, fold change > 2, p-value < 0.01. WBPaper00061203:sin-3(tm1276)_upregulated
  Genes that showed significantly increased expression in daf-2(e1370) comparing to in N2. To identify DEGs, Students t test and the log2 median ratio test were performed to compute t values and median ratios for all the annotated genes. The adjusted P values from each test were computed using an empirical distribution of the null hypothesis, which was obtained from random permutations of the samples. Finally, the adjusted P values from the individual tests were combined to compute the overall P values using Stouffers method , and genes with overall P < 0.05 and fold change > 1.5 were selected as DEGs. WBPaper00047131:daf-2(e1370)_upregulated_N2-background
  Transcripts that showed significantly decreased expression in sin-3(tm1276) comparing to in N2 at early embryo when there were only 3 -5 eggs in the adult. DESeq2, fold change > 2, adjusted p-value < 0.01 WBPaper00058598:sin-3(tm1276)_downregulated
  Expression Pattern Group C, enriched for genes involved in metabolic processes. The significance (P 0.0001) of the relative age (time) was used to determine if a gene was differentially expressed between the three age (time) groups. The effect of this factor explaining gene expression differences was used to determine if the expression went up or down during the two age/time periods (t1 - t2 and t2 -t3). Authors used a permutation approach to determine the thresholds for the different mapping strategies. For each of the used models for eQTL mapping, authors used 23,000 permutations. For each permutation, authors randomly picked a spot; each spot could only be picked once. The gene expression and relative lifespan values were than randomly distributed over the RILs (and time points) and used for mapping. In this way, authors obtained a threshold for each of the explaining factors. For the single time points, authors used a FDR of 0.01 to adjust for multiple testing. The genome-wide threshold for this FDR is -log10 P = 3.8 for each of the three time points. For the combined models (t1 to t2 and t2 to t3), authors used a genome-wide threshold of -log10 P = 4, which resembles an FDR of 0.006, 0.001, and 0.006 for marker, age, and the interaction between marker and age, respectively. To determine the threshold for the single gene examples, authors used 1000 permutations as in the genome-wide threshold. The difference is that they use the gene under study in all of the permutations. The P-values for the gene specific thresholds were determined at FDR = 0.05. WBPaper00036286:Pattern_C
  Transcripts that showed significantly increased expression in sftb-1(cer6) deletion homozygous comparing to to in N2 animals at L4 larva stage. DESeq2, fold change > 2 WBPaper00058725:sftb-1(cer6)_downregulated
  Transcripts that showed significantly increased expression in xrep-4(lax137). DESeq2. Genes were selected if their p value < 0.01. WBPaper00066062:xrep-4(lax137)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:A-class-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L2-larva_expressed
  Genes that showed oscillating mRNA expression level throughout the 16 hour time courses from L3 larva to young adult. The following three lines of R code were used to perform the classification: increasing <-2*amplitude-PC1 < -1.7; oscillating <-!increasing & (amplitude > 0.55); flat <-!increasing & !oscillating; Note that the amplitude of a sinusoidal wave corresponds to only half the fold change between trough and peak. WBPaper00044736:oscillating_dev_expression
  Transcripts that showed significantly increased expression in nuo-6(qm200) comparing to in N2. Differential gene expression analysis was performed using the quasi-likeli-hood framework in edgeR package v. 3.20.1 in R v. 3.4.1. WBPaper00053810:nuo-6(qm200)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:dopaminergic-neurons_L3-L4-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:excretory-cell_L2-larva_expressed
Bacteria infection: Staphylococcus aureus mRNAs that showed increased expression 8 hours after hlh-30(tm1978) animals were infected by S. aureus. DESeq, p <= 0.05 WBPaper00045314:S.aureus-induced_hlh-30(tm1978)

4 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr1010422 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr2000507 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1143921 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr2018732 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  

1 GO Annotation

Annotation Extension Qualifier
  located_in

4 Homologues

Type
orthologue
orthologue
orthologue
orthologue

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00015517 7765368 7772017 -1

1 Ontology Annotations

Annotation Extension Qualifier
  located_in

0 Regulates Expr Cluster

1 Sequence

Length
6650

1 Sequence Ontology Term

Identifier Name Description
gene  

0 Strains

1 Upstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrII_7772018..7772463   446 II: 7772018-7772463 Caenorhabditis elegans