WormMine

WS294

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00000744 Gene Name  col-171
Sequence Name  ? T10E10.7 Organism  Caenorhabditis elegans
Automated Description  Predicted to be a structural constituent of cuticle. Predicted to be located in membrane. Predicted to be part of collagen trimer. Biotype  SO:0001217
Genetic Position  X :-3.05355± Length (nt)  ? 924
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00000744

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:T10E10.7.1 T10E10.7.1 924   X: 6334298-6335221
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:T10E10.7 T10E10.7 924   X: 6334298-6335221

0 RNAi Result

20 Allele

Public Name
gk964260
gk568639
gk698376
WBVar01881238
WBVar01848859
gk797841
gk355050
gk739840
gk811178
gk368285
gk688234
gk817719
gk937656
gk568640
gk331174
WBVar01601849
WBVar01601850
WBVar01820091
h3493
WBVar01881239

1 Chromosome

WormBase ID Organism Length (nt)
X Caenorhabditis elegans 17718942  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00000744 6334298 6335221 1

3 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrX_6335222..6335278   57 X: 6335222-6335278 Caenorhabditis elegans

90 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Genes with expression altered >= 3-fold in dpy-10(e128) mutants. Data across the wild type series was analyzed using the Significance analysis of Microarrays (SAM) algorithm (to calculate the False Discovery Rate (FDR)). WBPaper00035873:dpy-10_regulated
  mRNAs that showed decreased expression in 1 cell mebryo comparing to in oocyte, according to RNAseq analysis. Gaussian error propagation. As cutoff for the up-regulated genes authors used log2 fold change > 1 and P < 0.05 and as cutoff for the down-regulated genes authors used log2 fold change < -1 and P < 0.05. WBPaper00045420:fertilization_downregulated_transcript
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:bodywall-muscle_L1-larva_expressed
  Transcripts that showed significantly increased expression in ogt-1(ok1474) neuronal cells isolated by FACs comparing to in FACs isolated neuronal cells from wild type. DESeq2, fold change > 2, FDR < 0.05. WBPaper00066485:ogt-1(ok1474)_upregulated_neuron
  Transcripts that showed significantly decreased expression in daf-16(mgDf50) comparing to in N2 at L1 larva stage. DESeq v1.20.0 was used to analyze differential gene expression. Transcripts with adjusted p-value < 0.05 were considered differentialled expressed. WBPaper00048971:daf-16(mgDf50)_downregulated_L1
  Proteins that showed significantly decreased expression after 1-day-old wild type adults were exposed to cisplatin (300ug per mL) for 6 hours. The differential expression analysis was performed in R. Differentially expressed proteins were identified by using a two-sided t-test on log-transformed data. WBPaper00065373:Cisplatin_downregulated_WT
  Proteins that showed significantly decreased expression in 1-day-old sek-1(km4) adults comparing to in wild type animals, both with 6 hours of cisplatin treatment. The differential expression analysis was performed in R. Differentially expressed proteins were identified by using a two-sided t-test on log-transformed data. WBPaper00065373:sek-1(km4)_downregulated_cisplatin
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:coelomocytes_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 0hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:germline-precursors_blastula-embryo_expressed
  Transcripts that showed significantly decreased expression in eat-2(ad1116) comparing to in N2 at 3-days post L4 adult hermaphrodite animals. DESeq2(v1.14.1), fold change > 2, p-value < 0.05 WBPaper00055354:eat-2(ad1116)_downregulated
  Transcripts that showed significantly increased expression in daf-2(e1370) comparing to in N2. Student's t-test, fold change > 2, p-value < 0.05. WBPaper00055386:daf-2(e1370)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:hypodermis_L1-larva_expressed
Bacteria infection: Serratia marcescens Genes with increased expression after 24 hours of infection by S.marcescens Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:S.marcescens_24hr_upregulated_TilingArray
  Genes expressed in N2. Expressed transcripts were identified on the basis of a Present call in 3 out of 4 N2 experiments as determined by Affymetrix MAS 5.0. WBPaper00025141:N2_Expressed_Genes
  WT-Pico Pan-neural Depleted Genes, with genes found multiple times in a single dataset removed (without dups). To identify differentially expressed transcripts, normalized intensity values from the pan-neural data sets were compared to a reference (from all larval cells) using Significance Analysis of Microarray software (SAM). A two class unpaired analysis of the data was performed to identify neuron-enriched genes. Pan-neural enriched transcripts in the IVT and WT-Pico-derived data set were defined as 1.5X elevated vs the reference at a False Discovery Rate (FDR) = 3%. WBPaper00031532:Larva_Pan_Neuronal_Depleted
  Transcripts that showed significantly increased expression in jmjd-3.1p::jmjd-3.1 comparing to in N2. DESeq2 Benjamini-Hochberg adjusted p-value < 0.05. WBPaper00049545:jmjd-3.1(+)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:A-class-motor-neurons_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:bodywall-muscle_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:dopaminergic-neurons_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:intestine_L1-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:pharyngeal-muscle_L1-larva_expressed
  Genes upregulated by > 2-fold in CY262(sqt-1(sc13) age-1(mg44); bvIs1) adults, which intestinally express age-1, relative to wildtype. > 2-fold-change, p-value <= 0.05, t-test. WBPaper00038237:age-1_upregulated_intestine_rescue
  Genes upregulated by > 2-fold in CY251(sqt-1(sc13) age-1(mg44); bvIs2) adults, which neuronally express age-1, relative to wildtype. > 2-fold-change, p-value <= 0.05, t-test. WBPaper00038237:age-1_upregulated_neuron_rescue
  Genes upregulated by > 2-fold in SP75 (sqt-1(sc13) age-1(mg44)/mnC1) adults relative to wildtype. > 2-fold-change, p-value <= 0.05, t-test. WBPaper00038237:age-1_upregulated_nontransgenic
Exposure to Au-NP. Genes with differeiential expression after exposed to Au-NP. Hierarchical clustering was performed in Partek to confirm that the samples match to the treatment groups. Analysis of variance (ANOVA) was used to partition the variance due to treatment from technical and biological noise. The list of differentially expressed genes was generated by identifying the genes showing fold change of more than 1.5 and less than -1.5 at p < 0.05 with and without multiple sample correction, False Discovery Rate (FDR). False discovery correction according to Benjamini and Hochberg produced a list of 37 significant transcripts. FDR was not applied when selecting differential expressed genes, because this approach can increase the type II error and result in elimination of the genes responsive to the treatment. WBPaper00040821:Au-NP_regulated
  Genes depleted in muscle cells (24hr muscle dataset). Dissociated myo-3::GFP embryos were cultured for 24 hours before FACS sorting. A two-class unpaired analysis was performed to identify genes that are elevated 1.7-fold or greater when compared with the reference for each dataset, at a false discovery rate of 1.8% or less for M0 and 1.2% or less for the M24 datasets. WBPaper00031003:24hr_muscle_depleted
  Total muscle depleted genes (complete list of non-overlapping genes from the 0hr and 24hr muscle depleted datasets). A two-class unpaired analysis was performed to identify genes that are elevated 1.7-fold or greater when compared with the reference for each dataset, at a false discovery rate of 1.8% or less for M0 and 1.2% or less for the M24 datasets. WBPaper00031003:total_muscle_depleted
Treatment with 0.2mM of HuminFeed until young adult stage (3 days). Gene significantly up-regulated by treatment with 0.2mM of HuminFeed until young adult stage (3 days), with a minimum fold change in gene expression of 1.25. For selection of DEGs, an unpaired t -test was performed followed by a significance analysis of microarray (SAM) test including a calculation that estimates the false discovery rate (FDR). FDR, reducing on the one hand type I errors for null associations, was set to a non-stringent level of <12.5%, mainly to guard from an increase of type II error and also based on findings by Levine et al. (2011), which described 12.5% as most acceptable optimum level of FDR, representing the 90th percentile of the normal distribution curve. DEGs exceeding a fold change of 1.25 were further analyzed with respect to their functional clustering. This fold-cut-off was chosen to allow an interpretation that is biologically meaningful, akin to the notion that data of sound technical and experimental quality which returns strong, statistically significant, absolute signal intensities is sufficiently robust to justify a fold-cut-off of >1.2. This analysis was conducted using the functional annotation clustering tool of the Database for Annotation, Visualization, and Integrated Discovery (DAVID; Huang et al., 2007). WBPaper00041002:HF_3d_0.2mM_Up
Treatment with 2.0mM of HuminFeed until young adult stage (3 days). Gene significantly up-regulated by treatment with 2.0mM of HuminFeed until young adult stage (3 days), with a minimum fold change in gene expression of 1.25. For selection of DEGs, an unpaired t -test was performed followed by a significance analysis of microarray (SAM) test including a calculation that estimates the false discovery rate (FDR). FDR, reducing on the one hand type I errors for null associations, was set to a non-stringent level of <12.5%, mainly to guard from an increase of type II error and also based on findings by Levine et al. (2011), which described 12.5% as most acceptable optimum level of FDR, representing the 90th percentile of the normal distribution curve. DEGs exceeding a fold change of 1.25 were further analyzed with respect to their functional clustering. This fold-cut-off was chosen to allow an interpretation that is biologically meaningful, akin to the notion that data of sound technical and experimental quality which returns strong, statistically significant, absolute signal intensities is sufficiently robust to justify a fold-cut-off of >1.2. This analysis was conducted using the functional annotation clustering tool of the Database for Annotation, Visualization, and Integrated Discovery (DAVID; Huang et al., 2007). WBPaper00041002:HF_3d_2.0mM_Up
Treatment with 2.0mM of HuminFeed Hydroquinone until young adult stage (3 days). Gene significantly down-regulated by treatment with 2.0mM of HuminFeed Hydroquinone until young adult stage (3 days), with a minimum fold change in gene expression of 0.8. For selection of DEGs, an unpaired t -test was performed followed by a significance analysis of microarray (SAM) test including a calculation that estimates the false discovery rate (FDR). FDR, reducing on the one hand type I errors for null associations, was set to a non-stringent level of <12.5%, mainly to guard from an increase of type II error and also based on findings by Levine et al. (2011), which described 12.5% as most acceptable optimum level of FDR, representing the 90th percentile of the normal distribution curve. DEGs exceeding a fold change of 1.25 were further analyzed with respect to their functional clustering. This fold-cut-off was chosen to allow an interpretation that is biologically meaningful, akin to the notion that data of sound technical and experimental quality which returns strong, statistically significant, absolute signal intensities is sufficiently robust to justify a fold-cut-off of >1.2. This analysis was conducted using the functional annotation clustering tool of the Database for Annotation, Visualization, and Integrated Discovery (DAVID; Huang et al., 2007). WBPaper00041002:HQ_3d_2.0mM_Down

5 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr1030454 Tiling arrays expression graphs  
    Expr2010365 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1156657 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr1015038 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr2028608 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  

3 GO Annotation

Annotation Extension Qualifier
  enables
  located_in
  part_of

0 Homologues

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00000744 6334298 6335221 1

3 Ontology Annotations

Annotation Extension Qualifier
  enables
  located_in
  part_of

0 Regulates Expr Cluster

1 Sequence

Length
924

1 Sequence Ontology Term