WormMine

WS294

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00020838 Gene Name  trak-1
Sequence Name  ? T27A3.1 Brief Description  T27A3.1 encodes, by alternative splicing, five isoforms of an ortholog of human TRAK1, HAP1 and TRAK2 and of Drosophila MILTON; T27A3.1 is expressed in some chemosensory neurons (ASK, ASI, ADF, and ASE), phasmid neurons (PHB), and CAN neurons; T27A3.1 is also expressed in pharyngeal muscle, epithelial intestinal cells, seam cells, vulva, distal tip cells and the distal sheath cell pair 1, male bilateral sensory rays and spicules, and tail cells; the N-terminal 250-300 residues of T27A3.1 are predicted to encode a highly conserved coiled-coil domain; T27A3.1(RNAi) animals have no obvious phenotypes.
Organism  Caenorhabditis elegans Automated Description  Predicted to enable myosin binding activity. Predicted to be involved in mitochondrion distribution; protein targeting; and vesicle transport along microtubule. Predicted to be located in cytoplasmic vesicle and mitochondrion. Expressed in several structures, including CAN; amphid neurons; hermaphrodite somatic gonadal cell; phasmid sensillum; and rectum. Human ortholog(s) of this gene implicated in developmental and epileptic encephalopathy 68. Is an ortholog of human TRAK1 (trafficking kinesin protein 1).
Biotype  SO:0001217 Genetic Position  I :0.789029±
Length (nt)  ? 3756
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00020838

Genomics

3 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:T27A3.1c.1 T27A3.1c.1 2074   I: 6123120-6126875
Transcript:T27A3.1a.1 T27A3.1a.1 2050   I: 6123122-6126847
Transcript:T27A3.1d.1 T27A3.1d.1 2016   I: 6123124-6126847
 

Other

3 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:T27A3.1c T27A3.1c 1701   I: 6123150-6123245
CDS:T27A3.1d T27A3.1d 1431   I: 6123150-6123245
CDS:T27A3.1a T27A3.1a 1707   I: 6123150-6123245

8 RNAi Result

WormBase ID
WBRNAi00106794
WBRNAi00106793
WBRNAi00000337
WBRNAi00002415
WBRNAi00054259
WBRNAi00004314
WBRNAi00117097
WBRNAi00075803

49 Allele

Public Name
gk962858
gk962706
gk963902
gk964505
WBVar02122340
tm1572
WBVar00537255
gk331535
gk664515
gk699156
gk385318
gk377601
gk690235
gk536681
gk919538
gk893744
gk571211
gk384827
gk828175
gk664840
gk851365
gk487283
gk855710
gk755835
gk893745
gk866524
gk759578
gk474981
gk758965
WBVar02039677

1 Chromosome

WormBase ID Organism Length (nt)
I Caenorhabditis elegans 15072434  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00020838 6123120 6126875 1

4 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  
Panther orthologue and paralogue predictions  

1 Downstream Intergenic Region

WormBase ID Name Sequence Name Length (nt) Chromosome Location Organism
intergenic_region_chrI_6126876..6133006   6131 I: 6126876-6133006 Caenorhabditis elegans

128 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Transcripts expressed in neuronal cells, by analyzingfluorescence-activated cell sorted (FACS) neurons. DESeq. False discovry rate (FDR) < 0.1. WBPaper00048988:neuron_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L1-larva_expressed
  Genes that showed increased expression in wdr-5(ok1417) comparing with in N2. Statistical analysis for misexpression was performed using a moderated t test from the package limma. All genes with a false discovery rate (FDR) of <= 5% (p <= 0.05) were selected as differentially regulated. WBPaper00045861:wdr-5(ok1417)_upregulated
  Transcripts that showed significantly increased expression glp-1(e2141); TU3401 animals comparing to in TU3401 animals. Fold change > 2, FDR < 0.01. WBPaper00065993:glp-1(e2141)_upregulated
Fungi infection: Myzocytiopsis humicola Transcripts that showed significantly altered expression 12 hours after animals were infected by M. humicola. Differentially expressed genes as determined by Kallisto and Sleuth (pval<0.01, qval<0.1). WBPaper00060871:M.humicola-infection_12h_regulated
  Transcripts expressed in the epithelial tissues surrounding the pharynx that includes the arcade and intestinal valve (AIV) cells, according to PAT-Seq analysis using Pbath-15-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:arcade_intestinal-valve_expressed
  Transcripts expressed in body muscle, according to PAT-Seq analysis using Pmyo-3-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:body-muscle_expressed
  Transcripts expressed in GABAergic neuron, according to PAT-Seq analysis using Punc-47-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:GABAergic-neuron_expressed
  Transcripts expressed in hypodermis, according to PAT-Seq analysis using Pdpy-7-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:hypodermis_expressed
  Transcripts that showed significantly decreased expression in atfs-1(cmh15) (null allele) animals comparing to in N2 animals at L4 larva stage. edgeR, fold change > 2, FDR < 0.05 WBPaper00060909:atfs-1(cmh15)_downregulated
  Transcripts expressed in intestine, according to PAT-Seq analysis using Pges-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:intestine_expressed
  Maternal class (M): genes that are called present in at least one of the three PC6 replicates. A modified Welch F statistic was used for ANOVA. For each gene, regressed error estimates were substituted for observed error estimates. The substitution is justified by the lack of consistency among the most and least variable genes at each time point. Regressed error estimates were abundance-dependent pooled error estimates that represented a median error estimate from a window of genes of similar abundance to the gene of interest. A randomization test was used to compute the probability Pg of the observed F statistic for gene g under the null hypothesis that developmental time had no effect on expression. P-values were not corrected for multiple testing. [cgc5767]:expression_class_M
  Transcripts expressed in NMDA neuron, according to PAT-Seq analysis using Pnmr-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:NMDA-neuron_expressed
  Transcripts expressed in pharynx, according to PAT-Seq analysis using Pmyo-2-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:pharynx_expressed
  Strictly maternal class (SM): genes that are the subset of maternal genes that are not also classified as embryonic. A modified Welch F statistic was used for ANOVA. For each gene, regressed error estimates were substituted for observed error estimates. The substitution is justified by the lack of consistency among the most and least variable genes at each time point. Regressed error estimates were abundance-dependent pooled error estimates that represented a median error estimate from a window of genes of similar abundance to the gene of interest. A randomization test was used to compute the probability Pg of the observed F statistic for gene g under the null hypothesis that developmental time had no effect on expression. P-values were not corrected for multiple testing. [cgc5767]:expression_class_SM
  Transcripts that showed significantly increased expression in mrg-1(qa6200) comparing to in control animals in primordial germ cells (PGCs) at L1 larva stage. DESeq2(v1.32.0), FDR < 0.05. WBPaper00064315:mrg-1(qa6200)_upregulated_PGCs
  Transcripts that showed significantly increased expression in aak-1(tm1944);aak-2(ok524) animals comparing to in N2. DEseq 1.18.0, adjusted p-value < 0.05. WBPaper00056471:aak-1(tm1944);aak-2(ok524)_upregulated
  Significantly differentially expressed genes as determined by microarray analysis of wild-type and cde-1 mutant germlines. RNAs that changed at least 2-fold with a probability of p < 0.05 were considered differentially regulated between wildtype and cde-1. WBPaper00035269:cde-1_regulated
  Transcripts detected in body muscle nuclei according to a nuclear FACS-based strategy. Cufflinks WBPaper00065120:body-muscle-transcriptome
  Transcripts that showed significantly increased expression in xrep-4(lax137). DESeq2. Genes were selected if their p value < 0.01. WBPaper00066062:xrep-4(lax137)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:A-class-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:dopaminergic-neurons_L3-L4-larva_expressed
  Transcripts that showed significantly increased expression in mep-1(ne4629[MEP-1-GFP-Degron]) in gonads dissected from 1-day old adult animals. Salmon was used to map the mRNA-seq reads with the worm database WS268, and its output files were imported to DESeq2 in R. The differentially expressed genes were filtered by fold change more than 2 and adjusted p-value < 0.05. The scatter plots were generated by the plot function in R. WBPaper00061479:mep-1(ne4629)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:excretory-cell_L2-larva_expressed
  Transcripts that showed significantly increased expression in ubc-9(ne4833[ubc-9(G56R)] in gonads dissected from 1-day old adult animals. Salmon was used to map the mRNA-seq reads with the worm database WS268, and its output files were imported to DESeq2 in R. The differentially expressed genes were filtered by fold change more than 2 and adjusted p-value < 0.05. The scatter plots were generated by the plot function in R. WBPaper00061479:ubc-9(ne4833)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:glr-1(+)-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:intestine_L2-larva_expressed
  Transcripts that showed significantly increased expression in hda-2(ok1479) comparing to in N2 animals. DESeq2 (version 1.28.1), FDR < 0.01, fold change > 2. WBPaper00062159:hda-2(ok1479)_upregulated
  Transcripts that showed significantly decreased expression after animals were treated with 100uM Psora and 250uM Allantoin from day 1 to day 3 adult hermaphradite. DESeq2(v1.14.1), fold change > 2, p-value < 0.05 WBPaper00055354:Psora-Allantoin_downregulated
  Transcripts that showed significantly decreased expression after animals were treated with 100uM Rapamycin and 250uM Allantoin from day 1 to day 3 adult hermaphradite. DESeq2(v1.14.1), fold change > 2, p-value < 0.05 WBPaper00055354:Rapamycin-Allantoin_downregulated

8 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr2035618 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
Picture: Figure 3.   Expr8171 Cells with neuronal-like processes were visible immediately after the embryonic stage and remained through the life of the worm. GFP-positive cells were visible in the head anterior and posterior ganglia, which contain most of the C. elegans neurons as well as other associated cells. GFP-positive neuronal-like processes were also found in the nerve ring encircling the isthmus of the pharynx. Whether the GFP-positive cells were indeed neurons could not be determined solely on their localization. However, the finding of GFP-positive processes in the nerve ring suggested that at least some neurons were expressing T27A3.1. When a shorter promoter region, only 2 kb of genomic DNA upstream from the start codon of T27A3.1a, was used to drive the expression of GFP, a similar expression pattern was seen; however, fewer GFP-expressing neurons were visible. This data suggest that the larger 4-kb promoter region contains regulatory elements necessary for specific neuronal expression that are not contained within the smaller 2-kb promoter segment. Each transgenic line displayed similar expression patterns. GFP expression was visible late in embryogenesis but before morphogenesis and continued through the larval stages into adulthood. In adults, expression was found in a variety of cell types: GFP was found in the cells of the pharynx, in the epithelial cells of the intestine, in the seam cells that line the sides of the worm, in cells of the vulval region, in the somatic gonads, and in cells of the tail region. In males, GFP expression was found in the bilateral sensory rays and in the spicules. In the pharyngeal bulbs, the morphology and striated appearance of GFP-positive cells is consistent with muscle cell characteristics. In the vulval region, the GFP-positive cells did not appear to be neurons or muscle cells, and their identity remains unclear. In the gonads, GFP expression was visible in the distal tip cell (DTC), as well as in the distal sheath cell pair 1 that can be identified by its fish-net-like appearance. In the tail, GFP-positive cells most likely include the rectal gland cells, the rectum epithelial cells, and phasmid sheath cells (Phsh) and socket cells (Phso1 and 2).  
Picture: Figure 5.   Expr8173 To determine whether the T27A3.1pro::gfp neurons were chemosensory amphid and/or phasmid neurons, young adult worms were stained using the lipophilic dye, carbocyanine DiD. Colocalization of DiD staining with GFP was found in the head and the tail. Based on their positions, the chemosensory neurons expressing T27A3.1 are ASK L, ASK R, ASI L, and ASI R. In addition, at least two other T27A3.1-expressing neurons located anterior and posterior to the DiD-filled, ASH L neuron were identified as ADF L and ASE L chemosensory neurons. Other T27A3.1-expressing neurons, and their processes were found alongside DiD-stained chemosensory neurons and will require further analysis to be identified. In the tail region, T27A3.1pro::gfp was found in the more anterior DiD-filled neurons corresponding to PHB L and PHB R phasmid neurons.  
Picture: Figure 4.   Expr8172 Several T27A3.1pro::DsRed2-positive cells in the head region of the worms were also pan-neural::gfp-positive, demonstrating that T27A3.1 is indeed expressed in a subset of neurons. T27A3.1pro::DsRed2-positive neurons were first visible late in embryogenesis. Although there were some variations between worms within and between lines, up to seven neurons on each side of the head of the worm expressed T27A3.1. Authors were able to identify another pair of T27A3.1-expressing neurons along the body of the worm as CAN L and R.  
    Expr1022483 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr1039083 Tiling arrays expression graphs  
    Expr1157806 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr2017479 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  

8 GO Annotation

Annotation Extension Qualifier
  located_in
  located_in
  located_in
  involved_in
  involved_in
  involved_in
  enables
  located_in

10 Homologues

Type
orthologue
orthologue
orthologue
orthologue
orthologue
orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00020838 6123120 6126875 1

8 Ontology Annotations

Annotation Extension Qualifier
  located_in
  located_in
  located_in
  involved_in
  involved_in
  involved_in
  enables
  located_in

0 Regulates Expr Cluster

1 Sequence

Length
3756

1 Sequence Ontology Term