WormMine

WS294

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00001179 Gene Name  egl-10
Sequence Name  ? F28C1.2 Brief Description  egl-10 encodes an RGS protein, expressed in neurons, that affects egg laying and negatively regulates GOA-1 (Galpha[o]) signalling; it requires the Gbeta(5) ortholog GPB-2 for this activity, and genetically interacts with the egl-30 and goa-1 signaling pathways.
Organism  Caenorhabditis elegans Automated Description  Predicted to enable GTPase activator activity. Involved in several processes, including dopamine receptor signaling pathway; regulation of egg-laying behavior; and rhythmic behavior. Located in cytoplasm and neuron projection. Expressed in body wall musculature and neurons. Is an ortholog of human RGS6 (regulator of G protein signaling 6) and RGS7 (regulator of G protein signaling 7).
Biotype  SO:0001217 Genetic Position  V :4.25634 ±0.01422
Length (nt)  ? 9719
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00001179

Genomics

3 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:F28C1.2c.1 F28C1.2c.1 3181   V: 12453290-12463008
Transcript:F28C1.2a.1 F28C1.2a.1 3147   V: 12455172-12463008
Transcript:F28C1.2b.1 F28C1.2b.1 1920   V: 12455728-12462816
 

Other

3 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:F28C1.2c F28C1.2c 1758   V: 12454521-12454649
CDS:F28C1.2b F28C1.2b 1920   V: 12455728-12456018
CDS:F28C1.2a F28C1.2a 1668   V: 12456459-12456590

15 RNAi Result

WormBase ID
WBRNAi00089859
WBRNAi00045799
WBRNAi00014033
WBRNAi00060477
WBRNAi00060478
WBRNAi00060479
WBRNAi00060480
WBRNAi00060481
WBRNAi00060482
WBRNAi00060484
WBRNAi00060485
WBRNAi00060483
WBRNAi00089985
WBRNAi00090144
WBRNAi00090303

199 Allele

Public Name
gk963271
gk963301
gk964458
gk964459
gk963618
WBVar02061440
WBVar02061441
WBVar02061442
WBVar02061443
WBVar02061444
WBVar02061445
WBVar02061446
WBVar02061434
WBVar02061435
WBVar02061436
WBVar02061437
WBVar02061438
WBVar02061439
gk624849
WBVar02122673
WBVar02121271
WBVar02124824
WBVar00244434
WBVar01868000
WBVar01868001
WBVar01868006
WBVar01868007
WBVar01868008
WBVar01868009
WBVar01868002

1 Chromosome

WormBase ID Organism Length (nt)
V Caenorhabditis elegans 20924180  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00001179 12453290 12463008 -1

4 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  
Panther orthologue and paralogue predictions  

0 Downstream Intergenic Region

106 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Transcripts that showed significantly increased expression in L1 neural cells comparing to in adult neural cells. DESeq2 (v1.18.1) fold change > 2, P-adj<0.05, using BenjaminiHochberg correction. WBPaper00060811:L1_vs_adult_upregulated_neural
  Transcripts expressed in neuronal cells, by analyzingfluorescence-activated cell sorted (FACS) neurons. DESeq. False discovry rate (FDR) < 0.1. WBPaper00048988:neuron_expressed
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L1-larva_expressed
adult vs dauer larva Transcripts that showed differential expression in adult vs dauer lava in N2 animals at 20C. N.A. WBPaper00050488:adult_vs_dauer_regulated_N2_20C
  mRNAs that showed decreased expression in 1 cell mebryo comparing to in oocyte, according to RNAseq analysis. Gaussian error propagation. As cutoff for the up-regulated genes authors used log2 fold change > 1 and P < 0.05 and as cutoff for the down-regulated genes authors used log2 fold change < -1 and P < 0.05. WBPaper00045420:fertilization_downregulated_transcript
  Genes that showed expression levels higher than the corresponding reference sample (embryonic 24hr reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:AVE-neuron_L1-larva_expressed
  Neuronally enriched transcripts according to a comparison of neuronal nuclei IP samples to total nuclei using isolation of nuclei from tagged specific cell types (INTACT) technology. DESEQ2, fold change > 2 and FDR < 0.01. WBPaper00062103:neuron_enriched
  Transcripts that showed significantly increased expression glp-1(e2141); TU3401 animals comparing to in TU3401 animals. Fold change > 2, FDR < 0.01. WBPaper00065993:glp-1(e2141)_upregulated
Bacteria infection: Enterococcus faecalis Genes with increased expression after 24 hours of infection by E.faecalis Fold changes shown are pathogen vs OP50. For RNA-seq and tiling arrays, log2 fold changes between gene expression values of infected versus uninfected nematodes were calculated. For log2 fold changes > 0.00001 the values > 81.25th percentile were defined as up-regulated and for log2 fold changes < -0.00001 the values < 18.75th percentile were defined as down-regulated. WBPaper00038438:E.faecalis_24hr_upregulated_TilingArray
  Coexpression clique No. 60, 176662_at-Y53F4B.16, on the genome-wide coexpression clique map for the nematode GPL200 platform. All available microarray datasets for the GPL200 platform (Affymetrix C. elegans Genome Array) were obtained from the GEO repository. This included 2243 individual microarray experiments. These were normalized against each other with the software RMAexpress (Bolstad, 2014). Based on these normalized values, Pearsons correlation coefficients were obtained for each probe-probe pair of the 22,620 probes represented on this array type. The resulting list of correlation coefficients was then ranked to generate the ranked coexpression database with information on each probe represented on the GPL200 platform. WBPaper00061527:176662_at-Y53F4B.16
  Genes significantly enriched in NSM neurons (isolated by FACS) versus the reference, according to RNAseq analysis towards total RNA. Gene expression quantification and differential expression was analyzed using cufflinks v2.2.1. Enriched contains only genes significantly enriched (differentially expressed >= 2.4 fold in total RNA or >= 3.2 fold in DSN treated total RNA) in the NSM neurons versus the reference. WBPaper00045974:NSM_enriched_totalRNA_RNAseq
  Transcripts expressed in body muscle, according to PAT-Seq analysis using Pmyo-3-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:body-muscle_expressed
  Transcripts expressed in hypodermis, according to PAT-Seq analysis using Pdpy-7-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:hypodermis_expressed
  Transcripts expressed in intestine, according to PAT-Seq analysis using Pges-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:intestine_expressed
Bacteria infection: Bacillus thuringiensis mRNAs that showed significantly decreased expression after pathogenic bacteria Bacillus thuringiensis infections comparing to non pathogenic BT (BT247(1 to 10 mix) vs BT407 12h), according to RNAseq. Cuffdiff, ajusted p-value < 0.01. WBPaper00046497:B.thuringiensis_0.1mix_downregulated_12h
  Transcripts that showed significantly increased expression in sin-3(tm1276) comparing to in N2. DESeq2, fold change > 2, p-value < 0.01. WBPaper00061203:sin-3(tm1276)_upregulated
Bacteria infection: Bacillus thuringiensis mRNAs that showed significantly decreased expression after pathogenic bacteria Bacillus thuringiensis infections comparing to non pathogenic BT (BT247(1 to 2 mix) vs BT407 12h), according to RNAseq. Cuffdiff, ajusted p-value < 0.01. WBPaper00046497:B.thuringiensis_0.5mix_downregulated_12h
  Transcripts that showed significantly increased expression in aak-1(tm1944);aak-2(ok524) animals comparing to in N2. DEseq 1.18.0, adjusted p-value < 0.05. WBPaper00056471:aak-1(tm1944);aak-2(ok524)_upregulated
Bacteria infection: Staphylococcus aureus MW2. 4 hours of exposure. Transcripts that showed significantly increased expression after N2 animals had 4 hours of infection by Staphylococcus aureus (MW2). DEseq 1.18.0, adjusted p-value < 0.05. WBPaper00056471:S.aureus-4h_upregulated_N2
  Transcripts that showed significantly decreased expression in N2 animals exposed to 0.1mM Paraquat from hatching to reaching adult stage. DESeq2 version 1.22.2, p < 0.05 WBPaper00064716:paraquat_downregulated
  Transcripts that showed significantly decreased expression in sin-3(tm1276) comparing to in N2 at early embryo when there were only 3 -5 eggs in the adult. DESeq2, fold change > 2, adjusted p-value < 0.01 WBPaper00058598:sin-3(tm1276)_downregulated
  Transcripts that showed significantly increased expression in xrep-4(lax137). DESeq2. Genes were selected if their p value < 0.01. WBPaper00066062:xrep-4(lax137)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:A-class-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:all-neurons_L2-larva_expressed
  Transcripts that showed significantly increased expression in nuo-6(qm200) comparing to in N2. Differential gene expression analysis was performed using the quasi-likeli-hood framework in edgeR package v. 3.20.1 in R v. 3.4.1. WBPaper00053810:nuo-6(qm200)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:dopaminergic-neurons_L3-L4-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:GABAergic-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:glr-1(+)-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:PVD-OLL-neurons_L3-L4-larva_expressed
  Transcripts that showed significantly increased expression in hda-2(ok1479) comparing to in N2 animals. DESeq2 (version 1.28.1), FDR < 0.01, fold change > 2. WBPaper00062159:hda-2(ok1479)_upregulated

7 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr1030755 Tiling arrays expression graphs  
Body wall muscles were also stained. The staining did not disappear in egl-10 null animals but it was strengthened in egl-10 overexpression lines.   Expr1589 In worms that overexpress EGL-10 from a multicopy array of egl-10 transgenes, EGL-10 was detected in neural cell bodies as well as neural processes of these animals, either because overexpression raised the level of EGL-10 protein in cell bodies above the threshold of detection or because overexpression of EGL-10 exceeded the capacity of neurons to localize the protein to processes. A large number of neurons in the major ganglia of the head region expressed EGL-10. In addition, examination of the ventral cord neurons, lateral neurons, and tail ganglia suggested that most if not all neurons in C. elegans expressed EGL-10. In particular, the HSN motor neurons, expressed EGL-10. Staining observed in the nerve ring, ventral nerve cord, and dorsal nerve cord of wild-type animals. The stained structures consisted of bundles of neural processes and were at the locations of the majority of the chemical synapses in the animal. In neurons, EGL-10 protein appeared to be localized exclusively to processes; no staining was seen in the neural cell bodies of wild-type animals. Animals at all stages of development from first stage larvae to adults showed similar staining of neural processes.
Picture: Fig 6C.   Expr8868   EGL-10 was found primarily in the supernatant and thus not membrane-associated. The small fraction of EGL-10 that did pellet was mostly solubilized by addition of non-ionic detergent, indicating that this portion was membrane-associated.
    Expr2011205 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1021353 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr1149711 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr2029441 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  

19 GO Annotation

Annotation Extension Qualifier
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  located_in
  located_in
  located_in
  located_in
  involved_in
  located_in
  involved_in
  involved_in
  located_in
  enables
  involved_in

7 Homologues

Type
orthologue
orthologue
orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00001179 12453290 12463008 -1

19 Ontology Annotations

Annotation Extension Qualifier
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  located_in
  located_in
  located_in
  located_in
  involved_in
  located_in
  involved_in
  involved_in
  located_in
  enables
  involved_in

0 Regulates Expr Cluster

1 Sequence

Length
9719

1 Sequence Ontology Term