WormMine

WS294

Intermine data mining platform for C. elegans and related nematodes

Gene :

WormBase Gene ID  ? WBGene00004202 Gene Name  pry-1
Sequence Name  ? C37A5.9 Brief Description  pry-1 encodes a protein containing RGS and DIX domains that is distantly related to members of the Axin family of proteins that function as part of a complex that targets beta-catenin for destruction in the absence of Wnt signaling; during C. elegans development, PRY-1 functions as a negative regulator of Wnt signaling pathways that specify cell fates during asymmetric cell division; in addition, pry-1 has been shown to have a role in axon guidance; PRY-1 physically interacts with BAR-1, SGG-1, APR-1, and AXL-1; PRY-1 reporter fusion proteins are expressed in hypodermal and neuronal lineages where they typically localize asymmetrically to the anterior cortex.
Organism  Caenorhabditis elegans Automated Description  Enables ubiquitin-like ligase-substrate adaptor activity. Involved in several processes, including canonical Wnt signaling pathway; negative regulation of vulval development; and proteasome-mediated ubiquitin-dependent protein catabolic process. Located in cell cortex; membrane; and nucleus. Part of beta-catenin destruction complex. Expressed in several structures, including QL.a; hypodermal cell; neurons; ventral cord blast cell; and vulval precursor cell.
Biotype  SO:0001217 Genetic Position  I :23.6118 ±0.064259
Length (nt)  ? 6533
Quick Links:
 
Quick Links:
 

1 Organism

Name Taxon Id
Caenorhabditis elegans 6239

1 Synonyms

Value
WBGene00004202

Genomics

1 Transcripts

WormMine ID Sequence Name Length (nt) Chromosome Location
Transcript:C37A5.9.1 C37A5.9.1 1973   I: 14172828-14179360
 

Other

1 CDSs

WormMine ID Sequence Name Length (nt) Chromosome Location
CDS:C37A5.9 C37A5.9 1761   I: 14173036-14173062

63 RNAi Result

WormBase ID
WBRNAi00101738
WBRNAi00101737
WBRNAi00101740
WBRNAi00101739
WBRNAi00101736
WBRNAi00101735
WBRNAi00073997
WBRNAi00073998
WBRNAi00073999
WBRNAi00073992
WBRNAi00073993
WBRNAi00073994
WBRNAi00073995
WBRNAi00073996
WBRNAi00022937
WBRNAi00022938
WBRNAi00022939
WBRNAi00022940
WBRNAi00022941
WBRNAi00101400
WBRNAi00066042
WBRNAi00067838
WBRNAi00042101
WBRNAi00072375
WBRNAi00072374
WBRNAi00068523
WBRNAi00068522
WBRNAi00068963
WBRNAi00068962
WBRNAi00068965

164 Allele

Public Name
gk963849
gk964175
gk962681
h5677
gk963947
gk128608
gk128609
gk128610
gk128607
gk128599
gk128600
gk128605
gk128606
gk128601
gk128602
gk128603
gk128604
WBVar01434804
WBVar01434806
WBVar01434807
WBVar01434808
WBVar01714749
WBVar01714757
WBVar01714756
WBVar01714755
WBVar01714754
WBVar01714753
WBVar01714752
WBVar01714751
WBVar01714750

1 Chromosome

WormBase ID Organism Length (nt)
I Caenorhabditis elegans 15072434  

1 Chromosome Location


Feature . Primary Identifier
Start End Strand
WBGene00004202 14172828 14179360 -1

4 Data Sets

Name URL
WormBaseAcedbConverter  
GO Annotation data set  
C. elegans genomic annotations (GFF3 Gene)  
Panther orthologue and paralogue predictions  

0 Downstream Intergenic Region

111 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Transcripts expressed in neuronal cells, by analyzingfluorescence-activated cell sorted (FACS) neurons. DESeq. False discovry rate (FDR) < 0.1. WBPaper00048988:neuron_expressed
adult vs dauer larva Transcripts that showed differential expression in adult vs dauer lava in N2 animals at 20C. N.A. WBPaper00050488:adult_vs_dauer_regulated_N2_20C
  mRNAs that showed decreased expression in 1 cell mebryo comparing to in oocyte, according to RNAseq analysis. Gaussian error propagation. As cutoff for the up-regulated genes authors used log2 fold change > 1 and P < 0.05 and as cutoff for the down-regulated genes authors used log2 fold change < -1 and P < 0.05. WBPaper00045420:fertilization_downregulated_transcript
  Transcripts expressed in GABAergic neuron, according to PAT-Seq analysis using Punc-47-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:GABAergic-neuron_expressed
  Transcripts that showed significantly decreased expression in atfs-1(cmh15) (null allele) animals comparing to in N2 animals at L4 larva stage. edgeR, fold change > 2, FDR < 0.05 WBPaper00060909:atfs-1(cmh15)_downregulated
  Transcripts expressed in intestine, according to PAT-Seq analysis using Pges-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:intestine_expressed
  Maternal class (M): genes that are called present in at least one of the three PC6 replicates. A modified Welch F statistic was used for ANOVA. For each gene, regressed error estimates were substituted for observed error estimates. The substitution is justified by the lack of consistency among the most and least variable genes at each time point. Regressed error estimates were abundance-dependent pooled error estimates that represented a median error estimate from a window of genes of similar abundance to the gene of interest. A randomization test was used to compute the probability Pg of the observed F statistic for gene g under the null hypothesis that developmental time had no effect on expression. P-values were not corrected for multiple testing. [cgc5767]:expression_class_M
  Transcripts expressed in NMDA neuron, according to PAT-Seq analysis using Pnmr-1-GFP-3XFLAG mRNA tagging. Cufflinks FPKM value >=1. WBPaper00050990:NMDA-neuron_expressed
  Strictly maternal class (SM): genes that are the subset of maternal genes that are not also classified as embryonic. A modified Welch F statistic was used for ANOVA. For each gene, regressed error estimates were substituted for observed error estimates. The substitution is justified by the lack of consistency among the most and least variable genes at each time point. Regressed error estimates were abundance-dependent pooled error estimates that represented a median error estimate from a window of genes of similar abundance to the gene of interest. A randomization test was used to compute the probability Pg of the observed F statistic for gene g under the null hypothesis that developmental time had no effect on expression. P-values were not corrected for multiple testing. [cgc5767]:expression_class_SM
  Transcripts that showed significantly increased expression in sin-3(tm1276) comparing to in N2. DESeq2, fold change > 2, p-value < 0.01. WBPaper00061203:sin-3(tm1276)_upregulated
  Transcripts that showed significantly increased expression in aak-1(tm1944);aak-2(ok524) animals comparing to in N2. DEseq 1.18.0, adjusted p-value < 0.05. WBPaper00056471:aak-1(tm1944);aak-2(ok524)_upregulated
Bacteria infection: Staphylococcus aureus MW2. 4 hours of exposure. Transcripts that showed significantly increased expression after N2 animals had 4 hours of infection by Staphylococcus aureus (MW2). DEseq 1.18.0, adjusted p-value < 0.05. WBPaper00056471:S.aureus-4h_upregulated_N2
  Transcripts that showed significantly increased expression in alg-1(gk214), comparing to in N2. DESeq2, Fold change > 1.5. WBPaper00051404:alg-1(gk214)_upregulated
  Transcripts that showed significantly decreased expression in N2 animals exposed to 0.1mM Paraquat from hatching to reaching adult stage. DESeq2 version 1.22.2, p < 0.05 WBPaper00064716:paraquat_downregulated
  Transcripts that showed significantly decreased expression in sin-3(tm1276) comparing to in N2 at early embryo when there were only 3 -5 eggs in the adult. DESeq2, fold change > 2, adjusted p-value < 0.01 WBPaper00058598:sin-3(tm1276)_downregulated
Gamma irradiation 100 mGY per hour for 72 hours since L1 larva. Transcripts that showed significantly increased expression after exposure to 100mGy per hour gamma irradiation from L1 to day 1 adult hermaphrodite stage. DESeq2, FDR <= 0.05, log2 fold change >= 0.3 or <= -0.3. WBPaper00058958:100mGy-irradiation-72h_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:A-class-motor-neurons_L2-larva_expressed
  Transcripts that showed significantly increased expression in clk-1(qm30) comparing to in N2. Differential gene expression analysis was performed using the quasi-likeli-hood framework in edgeR package v. 3.20.1 in R v. 3.4.1. WBPaper00053810:clk-1(qm30)_upregulated
  Transcripts that showed significantly increased expression in daf-2(e1370) comparing to in N2. Differential gene expression analysis was performed using the quasi-likeli-hood framework in edgeR package v. 3.20.1 in R v. 3.4.1. WBPaper00053810:daf-2(e1370)_upregulated
  Transcripts that showed significantly increased expression in isp-1(qm150) comparing to in N2. Differential gene expression analysis was performed using the quasi-likeli-hood framework in edgeR package v. 3.20.1 in R v. 3.4.1. WBPaper00053810:isp-1(qm150)_upregulated
  Transcripts that showed significantly increased expression in nuo-6(qm200) comparing to in N2. Differential gene expression analysis was performed using the quasi-likeli-hood framework in edgeR package v. 3.20.1 in R v. 3.4.1. WBPaper00053810:nuo-6(qm200)_upregulated
  Transcripts that showed significantly increased expression in hda-1(ne4752[3xFLAG-Degron-HDA-1]) in gonads dissected from 1-day old adult animals. Salmon was used to map the mRNA-seq reads with the worm database WS268, and its output files were imported to DESeq2 in R. The differentially expressed genes were filtered by fold change more than 2 and adjusted p-value < 0.05. The scatter plots were generated by the plot function in R. WBPaper00061479:hda-1(ne4752)_upregulated
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:dopaminergic-neurons_L3-L4-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:excretory-cell_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:GABAergic-motor-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L2 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:glr-1(+)-neurons_L2-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:hypodermis_L3-L4-larva_expressed
  Genes that showed expression levels higher than the corresponding reference sample (L3/L4 all cell reference). A Mann-Whitney U test with an empirical background model and FDR correction for multiple testing was used to detect expressed transcripts (Benjamini and Hochberg 1995). Genes and TARs with an FDR <= 0.05 were reported as expressed above background. Authors detected differentially expressed transcripts using a method based on linear models. Genes and TARs were called differentially expressed if the FDR was <= 0.05 and the fold change (FC) >= 2.0. To more strictly correct for potential false-positives resulting from multiple sample comparisons, authors divided individual FDR estimates by the number of samplesor sample comparisons, respectively. This resulted in an adjusted FDR of 1.3 * 0.0001 for expression above background and of 7.4 * 0.0001 for differential expression. Authors called genes selectively enriched in a given tissue if they met the following requirements: (1) enriched expression in a given tissue (FDR <= 0.05 and FC >= 2.0), (2) fold change versus reference among the upper 40% of the positive FC range observed for this gene across all tissues, and (3) fold-change entropy among the lower 40% of the distribution observed for all genes. WBPaper00037950:PVD-OLL-neurons_L3-L4-larva_expressed
  Transcripts that showed significantly increased expression in hda-2(ok1479) comparing to in N2 animals. DESeq2 (version 1.28.1), FDR < 0.01, fold change > 2. WBPaper00062159:hda-2(ok1479)_upregulated
  Transcripts that showed significantly increased expression in srbc-48(ac23);kyIs262;fer-1(b232ts) comparing to in kyIs262;fer-1(b232ts), 24h after infection with P.aeruginosa. DESeq2, FDR <0.05, fold change > 2. WBPaper00059664:srbc-48(ac23)_upregulated

12 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
    Expr4601   PRY-1::GFP localized to the anterior cortex in all seam cells, except for the T cell, in which PRY-1::GFP was asymmetric. Just after the completion of the divisions, PRY-1::GFP remained on the cortex of the anterior daughter cells. They also localized symmetrically to the cytoplasm throughout the cell cycle. The asymmetric cortical distribution was observed just prior to the onset of division and during the division, but not in interphase cells, consistent with previous localization analyses of these proteins in interphase cells (see Expr1896).
    Expr15523 pry-1 expression revealed expression in almost all tissues during development. Expression in seam cells, neuronal cells, muscles, hypodermis, and intestine was readily visible. The most enriched tissues include neurons and muscles. A closer examination of GFP localization in developing animals revealed bright fluorescence in the ventral cord region, which includes neuronal and non-neuronal cells. The expression was largely similar in adults, although the fluorescence was much higher in BWMs. The posterior end of the intestine, near the rectal opening, showed a strong signal in L4 and adult animals; however, the rest of the intestine lacked a detectable expression.  
    Expr1032059 Tiling arrays expression graphs  
    Expr15119    
    Expr11735 pry-1(p)::YFP expression was seen in numerous cells in the embryo, and in the seam cells, P cells, VPC, and ventral cord neurons during all larval stages.  
The expression pattern of this construct was similar in independent transgenic lines, but the subcellular localization of the PRY-1 GFP fusion protein differed, ranging from localization at the plasma membrane and in cytoplasmic dots to diffuse cytoplasmic and nuclear staining. This difference in subcellular localization may be a consequence of variations in expression levels of the fusion protein in different transgenic lines. For ease of cell identification, a transgenic line showing diffuse cytoplasmic and nuclear staining was selected. This transgene fully rescued the lethality, the multivulva phenotype, and the QR.d migration defect of pry-1(mu38 and nc1). This suggests that the PRY-1 GFP fusion protein is functional and is correctly expressed in cells in which PRY-1 is essential.   Expr1896 The pry-1 reporter gene is widely expressed throughout development. Expression starts halfway through embryogenesis and is mainly localized to the ventral and lateral hypodermal cells. At the early L1 stage, pry-1 is expressed at high levels in the lateral hypodermal cells (or seam cells) V5 and V6 and in the Q neuroblasts QL and QR. pry-1 is also expressed in the ventral hypodermal (P) cells P7/8 to P11/12, body wall muscle cells, and neurons in the head, the tail, and the ventral nerve cord. No differences in pry-1 expression levels between QL and QR was observed, but this may be a result of PRY-1 GFP overexpression. At the end of the L1 stage, pry-1 is expressed at high levels in all seam cells. Expression was also observed in the QL and QR daughter cells. At later larval stages, pry-1 is expressed at high levels throughout the animal, including hypodermal cells, body wall muscle cells, and many neurons in the ventral nerve cord and head and tail ganglia. In addition, pry-1 is expressed in the vulva precursor (Pn.p) cells and in the developing vulva and male tail.  
    Expr1023658 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/levin2012  
    Expr2015129 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr1146101 Developmental gene expression time-course. Raw data can be downloaded from ftp://caltech.wormbase.org/pub/wormbase/datasets-published/hashimshony2015  
    Expr2033367 Single cell embryonic expression. Only cell types with an expression fraction of greater 0.2 of the maximum expressed fraction are labeled (Full data can be downloaded from http://caltech.wormbase.org/pub/wormbase/datasets-published/packer2019/). The colors represent the broad cell class to which the cell type has been assigned. The size of the point is proportional to the log2 of the numbers of cells in the dataset of that cell type. Interactive visualizations are available as a web app (https://cello.shinyapps.io/celegans/) and can also be installed as an R package (https://github.com/qinzhu/VisCello.celegans).  
    Expr15524   In general, GFP was diffused and not localized to any specific subcellular structures except in the case of muscles and posterior intestine, where nuclei are visible.
    Expr11712 A flat pattern of expression with little or no change across developmental time was seen.  

54 GO Annotation

Annotation Extension Qualifier
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  enables
part_of(GO:0043161) enables
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in

9 Homologues

Type
orthologue
orthologue
orthologue
orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue
least diverged orthologue

1 Locations


Feature . Primary Identifier
Start End Strand
WBGene00004202 14172828 14179360 -1

54 Ontology Annotations

Annotation Extension Qualifier
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  enables
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in
  enables
part_of(GO:0043161) enables
  involved_in
  involved_in
  involved_in
  involved_in
  involved_in

4 Regulates Expr Cluster

Regulated By Treatment Description Algorithm Primary Identifier
  Transcripts that showed significantly increased expression in pry-1(mu38) animals comparing to in N2 at L1 larva stage. DESeq, FDR < 0.05 WBPaper00055626:pry-1(mu38)_upregulated
  Transcripts that showed significantly decreased expression in pry-1(mu38) animals comparing to in N2 at L1 larva stage. DESeq, FDR < 0.05 WBPaper00055626:pry-1(mu38)_downregulated
  miRNAs that showed significantly increased expression in pry-1(mu38) comparing to in N2. Fold change > 2, FDR < 0.05 WBPaper00057033:pry-1(mu38)_upregulated
  miRNAs that showed significantly decreased expression in pry-1(mu38) comparing to in N2. Fold change > 2, FDR < 0.05 WBPaper00057033:pry-1(mu38)_downregulated

1 Sequence

Length
6533

1 Sequence Ontology Term