Other strain-- UL123 |
|
Expr103
|
This strain exhibits strong expression in the embryo. Expression is first seen in the 50-80 cell embryo and extends through to adulthood. It appears that most of the AB cells in the embryo stain, and what appears to be the cells of the C lineage. Some embryos exhibit staining in the two rows of nuclei that are the E lineage. All embryonic staining is very intense, and it spreads to the cytoplasm giving blue embryos, therefore obscuring the DAPI staining, making it difficult to count the number of cells in the embryos as each component begins expressing. This intense staining fades as the embryo ages, sometimes leaving blue comma stage embryos with no distinct nuclei staining. Hypodermal expression is seen in the 3 fold stage of embryogenesis and in young larvae which most probably are C-derived hyp-7 nuclei. Expression weakens as the worm gets older and is much less frequently expressed in adults. Some adults do show staining in the anterior hypodermal nuclei (hyp-3, hyp-4) and in the anterior hypodermal seam cells, also some nuclei stain in the tail. |
|
|
|
Expr3279
|
In the embryo, the downstream promoter (ten-1b) is most active in the descendants of the ABp cell and in the hypodermis. The dorsal hypodermal cells and the ventral leader cells were most prominently labeled. During postembryonic development, GFP fluorescence was visible in specialized epithelial cells including the arcade cells of the anterior end and the excretory duct. Ten-1b is also active in a subset of neurons including CAN and HSN neurons as well as neurons of the lumbar and retro-vesicular ganglion and some nerve ring interneurons. In males, GFP fluorescence is also visible in R8 and R9 ray neurons. |
|
|
|
Expr2897
|
The hlh-14::gfp transgene expresses GFP in the nuclei of several cells in the developing embryo. Prior to morphogenesis, a horseshoe-shaped pattern of cells expresses HLH-14::GFP in the anterior embryo. The expressing cells appear to be neuroblasts but have not been positively identified. During morphogenesis, HLH-14::GFP assumes a complicated, diverse pattern, and no HLH-14::GFP is visible during postembryonic development. In the posterior embryo, HLH-14::GFP was first detect in the bilaterally symmetric blast cells ABplapppa and ABprapppa. A centrally located posterior blast cell, identified as C.aapa, expresses HLH-14::GFP a little later. Around 230 minutes of development, each PVQ/HSN/PHB neuroblast divides to generate an anterior PVQ neuroblast and a posterior HSN/PHB neuroblast. HLH-14::GFP was seen expressed in both of these daughter cells. At 280 minutes of development, the HSN/PHB neuroblast divides to produce a small daughter cell that dies and a larger daughter cell, the HSN/PHB precursor. Both cells contain HLH-14::GFP. Finally, around 310 minutes of development, the PVQ neuroblast divides to produce a posterior daughter cell that dies and the PVQ neuron. Again, HLH-14::GFP was seen in both of these cells. |
Expressed in nuclei. |
|
|
Expr1633
|
First, pKK52 expression begins at the 28-cell stage in all four granddaughters and 16 great-great granddaughters of the MS and AB founder cells, respectively; this expression continues in many, possibly all, of their descendants until around the time of hatching. Second, expression becomes more pronounced in seam cells about 1 hour after their birth. This seam expression remains strong throughout embryonic and larval development, but becomes slightly reduced in adults. Third, robust expression is also seen in several cells in the head region, at least some of which are cells in the nervous system (neurons and/or support cells), beginning at approximately the comma stage and continuing through adulthood. For simplicity, this component of the expression pattern was referred as nervous system expression, although the precise identity of these cells were not determined. |
|
See Expr1633 for pKK52 expression pattern. |
|
Expr1634
|
pKK41 is expressed in the same groups of cells as the elt-5 translational reporter (pKK52), but the relative expression levels are different. Whereas the elt-5 reporter is strongly expressed in both seam cells and the nervous system during the comma through pretzel stages, the elt-6 reporter is strongly expressed only in the nervous system. Only weak expression of the elt-6 reporter is apparent in seam cells and in the AB and MS descendants during embryogenesis, but the seam expression becomes stronger during larval development. Strong expression of the elt-6 reporter in the nervous system continues throughout larval development. |
|
|
|
Expr10224
|
Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/ |
|
|
|
Expr10292
|
Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/ |
|
|
|
Expr10307
|
Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/ |
|
|
|
Expr10378
|
Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/ |
|