WormMine

WS294

Intermine data mining platform for C. elegans and related nematodes

Hide

Oops!

http://intermine.wormbase.org/tools/wormmine/service/ is incorrect

Anatomy Term :

Definition  Ventral cord motor neurons, innervate dorsal muscles Name  DA2
Primary Identifier  WBbt:0004869 Synonym  lineage name: ABplppapapa

1 Children

Definition Name Synonym Primary Identifier
nucleus of pedigree ABplppapapa ABplppapapa nucleus   WBbt:0001949

4 Expression Clusters

Regulated By Treatment Description Algorithm Primary Identifier
  Top 300 transcripts enriched in DA1, DA2, DA3, DA4, DA5, DA6, DA7, DA8, DA9 according to single cell RNAseq. Top 300 enriched transcripts were determined by log2.ratio of the tpm in the cell type vs the tpm in the other cells * the log2 of the cell.type tpm. WBPaper00061340:DA
  Transcripts enriched in DA according to single cell RNAseq. Genes that pass the Bonferroni threshold for multiple comparisons (q < 0.05) are significantly enriched. WBPaper00061651:DA_enriched
  Top 300 transcripts enriched in DA1, DA2, DA3, DA4, DA5, DA6, DA7, DA8, DA9, DB1, DB2, DB3, DB4, DB5, DB6, DB7 according to single cell RNAseq. Top 300 enriched transcripts were determined by log2.ratio of the tpm in the cell type vs the tpm in the other cells * the log2 of the cell.type tpm. WBPaper00061340:DA_DB
  Transcripts enriched in DA2_5 according to single cell RNAseq. Genes that pass the Bonferroni threshold for multiple comparisons (q < 0.05) are significantly enriched. WBPaper00066550:DA2_5_enriched

40 Expression Patterns

Remark Reporter Gene Primary Identifier Pattern Subcellular Localization
Picture: Fig. 3A, B, C, D.   Expr4902 In the transgenic animals carrying crm-1a::gfp reporter, consistent signals were detected in neurons in the ventral nerve cord. By the positions and clustering of the cell body as well as the axonal outgrowth along the ventral nerve cord, crm-1a is found to be expressed in the DA neurons 2 to 7, the DB neurons 3 to 7 and additional neurons in the VA, VB and AS classes along the nerve cord (VNC). Expression was also observed in neurons around the pharynx. In the male tail, gfp signals in the RnA neuronal cells of sensory rays 2 and 4 and the PVR neuron with the entire axonal process along the VNC were also observed. Entire axonal process of PVR along the VNC.
    Expr15649    
    Expr15442    
    Expr15558    
    Expr15567    
    Expr15571    
    Expr15572    
    Expr15573    
    Expr15579    
    Expr15586    
    Expr15651    
    Expr15652    
    Expr15589    
    Expr15591    
    Expr15598    
    Expr15604    
    Expr14590 Embryonic expression of exc-7 was first observed at the bean stage. By reverse lineaging with use of SIMI-Biocell software, we confirm the identity of one of the expressing cells at this stage as the excretory canal cell. In L1 animals, broad expression in the head, ventral nerve cord (VNC), and tail was observed. In young adults, expression is notably observed in vulva cells. In the nervous system specifically, expression is observed in many neurons throughout the body, but unlike Drosophila Elav, exc-7::gfp it is not panneuronally expressed. We confirmed previously reported expression in cholinergic VNC MNs, but absence of GABAergic VNC MNs, consistent with previous reports (Fujita et al., 1999; Loria et al., 2003) and consistent with exc-7 functioning in cholinergic, but not GABAergic neurons to control alternative splicing (Norris et al., 2014). exc-7::gfp is also expressed in some non-neuronal cell types, including muscle and hypodermis, but not in the gut. A previous report showed that exc-7 is only transiently and weakly expressed in the excretory cell, which, based on exc-7's excretory mutant phenotype, has puzzled researchers (Fujita et al., 2003). We find that the gfp tagged exc-7 locus is strongly and continuously expressed in the excretory canal cell.  
    Expr15608    
    Expr15611    
The timing expression pattern of coq-8 gene reported herein correlates with the overall Q content in C. elegans. Higher expression of coq-8 gene, and presumably Q biosynthesis activity, correspond with those tissues with particularly active bioenergetics in different development stages during life cycle. Thus coq-8 expression pattern may directly or indirectly reflect bioenergetics and cellular activity in vivo.   Expr3875 As adult animals progressed towards the post-fertile period, COQ-8::GFP expression became restricted to nervous system, whilst in other tissues, including muscles, progressively diminished until it completely disappeared. During the adult stage stained neurons could be individually identified. These included at least the ASIL, ASIR, PHAL, PHAR, PVDR and PVDL sensory neurons. The interneurons AVKL, AVKR, PVT, PVQL, PVQR, and motoneurons AS1 to AS8, DA1 to DA9, DD1 to DD6, and VC1 to VC6, were also stained. COQ-8 expression in hypodermis was not evident until worms reached the L2 stage, however not all hypodermal cells showed similar expression levels. Lateral hypodermal syncytium appeared heavily stained whereas seam cells, that form a protruding hypodermal ridge termed alae, did not show significant fluorescence. Neuronal cells stained in L1 remained stained during L2 stage. COQ-8 expression pattern changed in L4 larvae and young adult stages of very active and fertile young individuals. Hypodermis fluorescence decreased abruptly and GFP signal appeared restricted to muscles and nervous system. It worth noting that hypodermal COQ-8::GFP expression was readily observed during moulting period but decreases abruptly in young adults, that no further moults, allowing the detection of COQ-8::GFP fluorescence in smaller cells as coelomocytes, which were not readily visible in earlier larval stages. Coelomocytes are defensive phagocytes that produce reactive oxygen species (ROS) in worms and other invertebrates and a high Q content would be needed to prevent oxidative damage derived from this particular oxygen metabolism. During egg development fluorescence was readily detectable in early pre-morphogenetic stages about 4 to 5 h post-fertilization, becoming higher in both intensity and number of fluorescent cells during later embryogenesis. 4D microscopy revealed some spatial and temporal variability in the initial expression of COQ-8::GFP from embryo to embryo. The beginning of the COQ-8::GFP expression was detected between the 8th and the 10th embryonic mitosis and was triggered by a group of several blastomeres in all the analyzed embryos. These blastomers are committed to differentiate into specific tissues with high energetic requirements, such as neurons and muscles, but also hypodermis and coelomocytes. These tissues also showed fluorescence during later life stages. Fluorescence reached its maximum intensity in L3 stage of development, supporting a genetic basis to previous observations that showed highest Q content in L2 ~ L4 stages. Longitudinal nervous ventral and dorsal cords showed high fluorescence and some muscular innervations were also stained at this stage. Expression of COQ-8::GFP was clearly evident in hypodermis, neurons and cords, and muscle cells. This expression pattern cannot exclude other tissues showing much weaker fluorescence that may not be readily observed. The expression in muscle and neuronal cells was detected during larval development as early as in the first larval stage (L1). At this stage, longitudinal muscles quadrants were GFP-stained tail and pharyngeal ring neural centres displayed significantly higher COQ-8 expression levels than other tissues. The nervous system of L1 wild type larvae is not entirely developed and contains fewer connections between neurons than in older animals, as it is observed by the GFP staining.  
    Expr15570    
    Expr15644    
    Expr12716    
    Expr12717    
    Expr15633    
    Expr12715    
    Expr15314    
    Expr16257 For lin-39 and mab-5, previous work reported their partially overlapping expression in the ventral cord motor neurons (MNs). In this study, we used two fosmid reporters wgIs18[lin39::EGFP] and wgIs27[mab-5::EGFP] to map their expression to the single-cell resolution among the 75 motor neurons (MNs), which include 54 cholinergic MNs, 19 GABAergic MNs, and 2 serotonergic MNs with stereotypical positions. These MNs can be further classified into eight neuron classes (DA, DB, VA, VB, AS, VC, DD, and VD). By crossing the GFP reporters with mCherry strains labelling cholinergic or GABAergic neurons in the ventral cord, we identified lin-39 expression in DA2-5, DB2-7, VA3-8, VB4-9, AS2-8, VC1-6, DD2-6, and VD3-12 and mab-5 expression in DA4-8, DB5-7, VA6-11, VB8-11, AS5-11, VC3-6, DD2-6, and VD2-12. Both lin-39 and mab-5 expression were generally weaker in more anterior MNs. Interestingly, for cholinergic MNs, mab-5 and lin-39 expression only overlapped in a set of mid-body MNs; MNs more anterior to this region expressed only lin-39 and MNs more posterior expressed only mab-5. For GABAergic MNs (DD and VD), however, lin-39and mab-5 expression overlapped entirely. Outside of the ventral nerve cord, lin-39 was expressed in AQR and AIYL/R in the head and AVM, SDQL/R, PDEL/R, and PVDL/R neurons along the body; mab-5 was expressed in the AVL in the head, SDQL in the mid-body region, and PQR neuron in the tail.  
    Expr15628    
    Expr1918 In the pAB::GFP fusion, expression was seen in some pioneering neurones of the nerve ring, beginning at the early comma stage. At the two-fold stage, expression was detected in some 10 neurones in the head that extend axons into the nerve ring, and in two neurones in the tail that extend processes anteriorly. This expression pattern was confirmed by immunohistochemistry with MAb 16-48-2. At the three-fold stage, expression was seen in all DA motoneurones and persisted while they pioneered the dorsal nerve chord. It was also seen in four to six neurones in each of the four head ganglia, including ALA and RID in the dorsal ganglion, and four of the six neurones of the terminal bulb, including M5. In the tail, two neurones in the pre-anal ganglion and six in the lumbar ganglion, including PVQL and PVQR, showed pAB::GFP expression. Additionally, a transient expression was seen in the four rows of bodywall muscle cells in the embryo. After hatching, in L1 larvae, the expression domain extended to amphid and phasmid socket cells, and subsequently in L2 larvae to all the newly born AS motoneurones. In hermaphrodite L3 larvae, expression was seen in the sex myoblasts subsequent to their anterior migration towards the position of the presumptive vulva, and in adult worms at a high level in the vulval muscles vm1 and vm2. In males, expression was seen in the diagonal and spicule retractor muscles.  

11 Life Stages

Remark Definition Other Name Public Name Primary Identifier
  The whole period of embryogenesis in the nematode Caenorhabditis elegans, from the formation of an egg until hatching. embryo Ce WBls:0000003
  The C. elegans life stage spanning 620-800min(hatch) after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. A stage after elongation is over. The last stage of embryogenesis. Also called pre-hatched embryo, late embryo or morphogenetic embryo. fully-elongated embryo Ce WBls:0000021
  The C. elegans life stage spanning 350-620min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. The stage that embryo starts elongation until elongation is over. elongating embryo Ce WBls:0000015
  The C. elegans life stage spanning 290-350min after first cleavage at 20 Centigrade. Proliferate from 421 cells to 560 cells. The stage when embryo just finished gastrulation and is enclosing. enclosing embryo Ce WBls:0000013
  The C. elegans life stage spanning 0-350min after first cleavage at 20 Centigrade. Proliferate from 1 cell to 560 cells. From start of first cleavage until cleavage is over. proliferating embryo Ce WBls:0000004
  The C. elegans life stage spanning 520-620min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. The shape of embryo is elongated and tripple fold. A stage between 2-fold embryo and fully-elongated embryo. Also called pretzel embryo or pretzel stage. 3-fold embryo Ce WBls:0000020
  The C. elegans life stage spanning 420-460min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. The shape of embryo is elongated and fold back 50%. A stage between comma embryo and 2-fold embryo. 1.5-fold embryo Ce WBls:0000018
  The C. elegans life stage spanning 390-420min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. The shape of embryo looks like a comma. A stage between bean embryo and 1.5-fold embryo. comma embryo Ce WBls:0000017
  The C. elegans life stage spanning 460-520min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. The shape of embryo is elongated and double fold. A stage between 1.5-fold embryo and 3-fold embryo. 2-fold embryo Ce WBls:0000019
  The C. elegans life stage spanning 350-390min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. Emrbyo elongation started but have not formed comma shape yet. The shape of embryo looks like a lima bean. A stage right before comma embryo. Also called lima embryo or lima bean stage. bean embryo Ce WBls:0000016
  The C. elegans life stage spanning 210-350min after first cleavage at 20 Centigrade. Proliferate from 421 cells to 560 cells. The stage before the fast cleavage of cells finishes. late cleavage stage embryo Ce WBls:0000014

3 Parents

Definition Name Synonym Primary Identifier
neuron with cell body associated with the ventral nerve cord. ventral cord neuron ventral cord motoneuron WBbt:0005300
Neuron class of nine ventral cord motor neuron, innervates dorsal muscle. DA neuron   WBbt:0005278
embryonic cell ABplppapap   WBbt:0006570