|
|
Expr4543
|
Expressed in ASEL/R, AWCL/R, AVKL/R, AFDL/R, few variable other neurons (weak). |
|
Picture: N.A. Reporter gene fusion type not specified. |
|
Marker56
|
Expressed in AVK neurons. |
|
|
|
Expr15558
|
|
|
|
|
Expr15567
|
|
|
|
|
Expr15571
|
|
|
|
|
Expr15572
|
|
|
|
|
Expr15573
|
|
|
|
|
Expr15579
|
|
|
|
|
Expr15586
|
|
|
|
|
Expr15651
|
|
|
|
|
Expr15652
|
|
|
|
|
Expr15589
|
|
|
|
|
Expr13158
|
|
|
|
|
Expr15591
|
|
|
|
|
Expr15598
|
|
|
|
|
Expr15604
|
|
|
|
|
Expr15608
|
|
|
|
|
Expr963
|
Transgenic animals bearing pFX1G1 had high levels of GFP fluorescence or immunoreactivity in embryonic and postembryonic neurons. fax-1::gfp expression was first detected in embryos prior to elongation (approximately 350 minutes of development). By approximately 400 minutes, there is strong fax-1::gfp expression in as many as 20 neurons in the embryonic head and 1-2 neurons in the embryonic tail. fax-1::gfp is expressed in 20 neurons postembryonically, through the adult stage. The position of these neurons indicates that most or all of them are among the 22 neurons that express fax-1::gfp embryonically. These cells include both AVKR and AVKL. fax-1::gfp was not observed in either of the HSN or PVQ neurons, or in the PVPR neuron at any stage of development. fax-1::gfp expression was observed in several other neurons and two non-neuronal cell types in transgenic animals carrying pFX1G1. These include the pairs of CEPD and URX sensory neurons, three pharyngeal neurons (M1, MI and probably M5), two pairs of ring interneurons (including the RIC pair), five neurons in the retrovesicular ganglion (including SABD and the pair of SABV neurons), a single neuron in the preanal ganglion (either PVPL or PVT) and a single neuron in the dorsorectal ganglion of the tail (probably DVA). There is incompletely penetrant fax-1::gfp expression in a few additional neurons that were not identified, and in the non neuronal dorsal rectal cell and distal tip cells of the somatic gonad. |
GFP immunoreactivity was present in the cytoplasm, axons and nuclei of cells. Axons of neurons that express fax-1::gfp embryonically were observed in the process of outgrowth. |
|
|
Expr15611
|
|
|
Cells expressing TAX-6 were visualized using several tax-6::gfp fusion genes. The expression of tax-6 is under diverse transcriptional controls. Reporter gene fusion type not specified. pAK43 is a larger transgene that should include all promoter regions for tax-6 transcription, since another gene is encoded just upstream of this region and tax-6 mRNA does not seem to be derived from a polycistronic transcript. |
|
Expr1824
|
When introduced into wildtype animals, pAK43 drove TAX-6 expression in many sensory neurons, as well as interneurons including AIY and AIZ, and most, if not all, muscle cells. pAK43 is expressed in muscle, AIB, AIY, AIZ, RIA, RIB, RIS, RIM, ASI, ADF, ASH, ASK, ADL, AUA, PHA, PHB, AVE. It is also expressed in AFD, ASE, AWA, AWC, AVK, AIM, RMDV, AVA. |
|
The timing expression pattern of coq-8 gene reported herein correlates with the overall Q content in C. elegans. Higher expression of coq-8 gene, and presumably Q biosynthesis activity, correspond with those tissues with particularly active bioenergetics in different development stages during life cycle. Thus coq-8 expression pattern may directly or indirectly reflect bioenergetics and cellular activity in vivo. |
|
Expr3875
|
As adult animals progressed towards the post-fertile period, COQ-8::GFP expression became restricted to nervous system, whilst in other tissues, including muscles, progressively diminished until it completely disappeared. During the adult stage stained neurons could be individually identified. These included at least the ASIL, ASIR, PHAL, PHAR, PVDR and PVDL sensory neurons. The interneurons AVKL, AVKR, PVT, PVQL, PVQR, and motoneurons AS1 to AS8, DA1 to DA9, DD1 to DD6, and VC1 to VC6, were also stained. COQ-8 expression in hypodermis was not evident until worms reached the L2 stage, however not all hypodermal cells showed similar expression levels. Lateral hypodermal syncytium appeared heavily stained whereas seam cells, that form a protruding hypodermal ridge termed alae, did not show significant fluorescence. Neuronal cells stained in L1 remained stained during L2 stage. COQ-8 expression pattern changed in L4 larvae and young adult stages of very active and fertile young individuals. Hypodermis fluorescence decreased abruptly and GFP signal appeared restricted to muscles and nervous system. It worth noting that hypodermal COQ-8::GFP expression was readily observed during moulting period but decreases abruptly in young adults, that no further moults, allowing the detection of COQ-8::GFP fluorescence in smaller cells as coelomocytes, which were not readily visible in earlier larval stages. Coelomocytes are defensive phagocytes that produce reactive oxygen species (ROS) in worms and other invertebrates and a high Q content would be needed to prevent oxidative damage derived from this particular oxygen metabolism. During egg development fluorescence was readily detectable in early pre-morphogenetic stages about 4 to 5 h post-fertilization, becoming higher in both intensity and number of fluorescent cells during later embryogenesis. 4D microscopy revealed some spatial and temporal variability in the initial expression of COQ-8::GFP from embryo to embryo. The beginning of the COQ-8::GFP expression was detected between the 8th and the 10th embryonic mitosis and was triggered by a group of several blastomeres in all the analyzed embryos. These blastomers are committed to differentiate into specific tissues with high energetic requirements, such as neurons and muscles, but also hypodermis and coelomocytes. These tissues also showed fluorescence during later life stages. Fluorescence reached its maximum intensity in L3 stage of development, supporting a genetic basis to previous observations that showed highest Q content in L2 ~ L4 stages. Longitudinal nervous ventral and dorsal cords showed high fluorescence and some muscular innervations were also stained at this stage. Expression of COQ-8::GFP was clearly evident in hypodermis, neurons and cords, and muscle cells. This expression pattern cannot exclude other tissues showing much weaker fluorescence that may not be readily observed. The expression in muscle and neuronal cells was detected during larval development as early as in the first larval stage (L1). At this stage, longitudinal muscles quadrants were GFP-stained tail and pharyngeal ring neural centres displayed significantly higher COQ-8 expression levels than other tissues. The nervous system of L1 wild type larvae is not entirely developed and contains fewer connections between neurons than in older animals, as it is observed by the GFP staining. |
|
|
|
Expr15402
|
|
|
|
|
Expr15662
|
ins-27 was expressed in the AVK interneuron, M2 pharyngeal neurons, and other neurons. ins-27 was not expressed in the intestine. |
|
Picture: Fig 3. |
|
Expr8677
|
Expression in the alimentary canal: Strong and consistent expression in anterior arcades, posterior arcades. Weak or rare expression in pm2, pm3, pm4, pm5, pm6, pm7, pm8, mc1, g1, g2, rectal gland cells, rectal epithelial cells. Expression in the nervous system: Phsh, AVK, DVC (early larva), PVR, SIB (early larva), URB, I3. Expression in the reproductive system: In adult stage, expressed in gonad sheath, uterus, vulval muscle. In developing larva stage, expressed in vulva. Neuronal expression of inx-9 appears around three-fold stage. The rectal gland expresses inx-9 during early larval stages. inx-9 is expressed in adult hermaphrodite sex muscles. inx-9 was expressed at high levels in arcade cells starting around two-fold stage continuing throughout development and adulthood. |
|
Picture: N.A. |
|
Expr8674
|
Expression in the alimentary canal: Strong and consistent expression in pharyngeal epithelium, pm1, pm2, pm3, pm4, mc2. Weak or rare expression in pm6, vir. Expression in the nervous system: AVD, AVK, RIS, URB. Pharyngeal and neuronal expression of inx-6 start around threefold stage, and some of the expression in head and tail neurons disappears after L1 stage. |
|
Picture: N.A. |
|
Expr8675
|
Expression in the alimentary canal: Strong and consistent expression in pm5, MC. Weak or rare expression in pharyngeal epithelium, pm1, pm2, pm3, pm4 pm6, pm7, pm8, g1, g2, rectal gland cells. Expression in the nervous system: ADE, AIY, ALM, ALN, AVA, AVK, AVM, BDU, CAN, DAn, DVA, DVB, DVC, FLP, HSN, LUA, PLM, PLN, PVC, PVM, PVP, PVQ, PVT, PVW, RID, RIS, SDQ, URB, MC. Expression in the reproductive system: In adult stage, expressed in HSN. Faint hypodermal expression of inx-7 is seen around two-fold stage and becomes stronger by threefold stage. |
|
Picture: Fig 3. |
|
Expr8676
|
Expression in the alimentary canal: Strong and consistent expression in pm1, pm3. Weak or rare expression in pharyngeal epithelium, pm2, pm4, pm5, pm6, pm7, pm8, intestine, rectal epithelial cells. Expression in the nervous system: ILso, AIN, AVF, AVJ, AVK, PVR, SAB. Expression in the reproductive system: In adult stage, expressed in Gonad sheath, Vulva(low), vulval muscle, uterine muscle. In developing larva stage, expressed in vulval muscle, uterine muscle. inx-8 is expressed broadly, albeit at very low levels, around two-fold stage, and its expression becomes stronger in the pharynx, nervous tissue, HMC, and GLR cells as development continues. In the reproductive system, expression of inx-8 starts during early larval stages and continues during migrations of the great granddaughters of the SM blast cell to their final locations and after the sex muscles achieve their final structures. inx-8 is expressed in the hypodermal cells of the animal in postembryonic stages. |
|
Reporter gene fusion type not specified. This information was extracted from published material (Archana Sharma-Oates, Andrew Mounsey and Ian A. Hope). |
|
Expr689
|
let-60 ras::lacZ. The Vulval lineage: First detected in L3 larvae (before vulval induction). Faint staining observed in P3.p-P8.p. Staining becomes stronger as VPCs begin dividing and fusion protein is expressed through adulthood. Faint staining observed in hyp7. Strong staining in vulA, vulB, vulC, vulD, vulE and vulF. Myoblast lineage: L1 (shortly after division of M) - Staining detected in M.d and M.v. Late L1, faint staining in progeny of M.v (body muscle) including SM (progeny of M.d (body muscle) ceases staining). L3: 8 progeny of SM (vulval muscle) stain before and after differentiation in muscle cells. Gonadal lineage: At hatching Z1 and Z4 gonadal cells stain. Progeny Z1 and Z4 that form distal tip cells (dtcs) and dtcs stain throughout larval development-adulthood. L4: Anchor cells (ac) of somatic gonad stains transiently at apex of invaginating vulva and continues until late L4 when ac nucleus fuses with uterine tissue. L4-adult expression (but not lacZ) Intense gfp near germline nuclei along border of distal arm of the gonad and in some places extended into the rachis. Muscle: L1-adult: All body wall muscle cells stain. Pharyngeal muscle pmp3-8 begin staining in L1 and continue until adulthood. Hypodermis: Begin staining in L2-3 larvae but consistent staining does not occur until the L4 stage and continues until adulthood. Hypodermal cells staining include V and H lineage-derived seam cells and V and H derived lateral hypodermal cells. Ventral hypodermal cells derived from P lineage also stain weakly but consistently in the adult. Intestine: Intestinal cells of late L1 larvae stain briefly during their terminal division. No staining after L2. Nervous system and excretory cells: extensive staining but not entirely at hatching throughout development. Beginning L1 - adulthood: Many ventral cord neurons stain positively identified include FLPL,R AVKL,R and either AIMR or AIYR based on co-staining with an anti-FMRF amide and an anti-galactosidase antibody. Nucleus of excretory cell stains in L1 to adulthood. |
|
Picture: N.A. |
|
Expr8670
|
Expression in the alimentary canal: Strong and consistent expression in pm6, pm7, pm8, vpi, intestine. Weak or rare expression in pm3. Expression in the nervous system: AVK. inx-2 is expressed broadly during early embryogenesis, its intestinal expression levels start to decrease afterhatching, becoming barely detectable in the adult, although its pharyngeal expression continues in the adult. |
|
Confirmation of GFP staining and NCS-1-positive cells was obtained with antibodies against Ce-NCS-1. See Expr893. |
|
Expr892
|
Ce-NCS-1 was predominantly expressed in sensory neurons (10 neuronal pairs: AWC, ASE, AWB, BAG, PHB, AWA, AFD, ADF, ASG, PHA). In addition, two pairs of interneurons (AVK, AIY), one motor neuron (RMG), and one muscle cell type (pm1) expressed Ce-NCS-1. Most of the NCS-1-expressing neurons were associated with two sensory organs, the head amphids and tail phasmids |
|