Top 300 transcripts enriched in Caaaaa, Caaaap, Caaapa, Caaapp, Caappd, Cpaaaa, Cpaaap, Cpaapa, Cpaapp, Cpapaa, Cpapap, Cpappd according to single cell RNAseq.
Top 300 enriched transcripts were determined by log2.ratio of the tpm in the cell type vs the tpm in the other cells * the log2 of the cell.type tpm.
This strain exhibits strong expression in the embryo. Expression is first seen in the 50-80 cell embryo and extends through to adulthood. It appears that most of the AB cells in the embryo stain, and what appears to be the cells of the C lineage. Some embryos exhibit staining in the two rows of nuclei that are the E lineage. All embryonic staining is very intense, and it spreads to the cytoplasm giving blue embryos, therefore obscuring the DAPI staining, making it difficult to count the number of cells in the embryos as each component begins expressing. This intense staining fades as the embryo ages, sometimes leaving blue comma stage embryos with no distinct nuclei staining. Hypodermal expression is seen in the 3 fold stage of embryogenesis and in young larvae which most probably are C-derived hyp-7 nuclei. Expression weakens as the worm gets older and is much less frequently expressed in adults. Some adults do show staining in the anterior hypodermal nuclei (hyp-3, hyp-4) and in the anterior hypodermal seam cells, also some nuclei stain in the tail.
Three methods, lacZ, gfp, antibody staining results all mixed together. Lots of unextracted cell objects buried in pattern text.
PAL-1 produced from zygotic transcripts is seen initially in C and D lineage cells that also expressed maternally derived PAL-1. As gastrulation begins, expression is seen in only Ca and Cp and then in their daughters, of which 2 are hypodermoblasts (Caa and Cpa) and 2 are myoblasts (Cap and Cpp). The GFP reporter is first detected at the late 2C-cell stage and then more strongly in the 4 daughters. At about 100 cells, expression is also detected in the 2 D-lineage myoblasts. Thereafter, PAL-1 continues to be detected in all C and D descendants until the end of gastrulation at about 350 cells. At about 180 cells (midgastrulation), the C hypodermal precursors, which express more strongly than the muscle precursors, form a characteristic double row on each side of the dorsal midline in the posterior. Thereafter, PAL-1 decreases in these cells and is no longer detectable with antibody after 350 500 cells. At about 250 cells, expression is detected in two AB cells that border the posterior left edge of the mesectodermal cell layer that is closing the ventral gastrulation cleft (ABplpappp and ABplppppp) and slightly later in the right homolog of one of them (ABprppppp). The daughters and granddaughters of these cells, generated after the cleft closes, continue to express strongly along the ventral midline until about the time of hatching. Beginning at about 360 cells, as morphogenesis begins, weak transient expression is detected in the posterior ectodermal P cells and occasionally in posterior V cells as both groups move ventrally. During this period the V cells become the lateral seam cells, and the P cells undergo their terminal embryonic divisions as they complete hypodermal enclosure of the embryo. Meanwhile, in the interior, pal-1 expression, detectable both with antibody and with reporter constructs, appears at about 350 cells in 2 Ea descendents near the middle of the gut primordium (the int5 pair) and in 2 anteriorly located MS descendants which migrate to the posterior and become the mesoblast M and the right intestinal muscle (mu intR). During early morphogenesis as the embryo develops through the comma stage and begins to elongate, all the pal-1-expressing cells (approximately 50) are located in the posterior ventral region, except for the 2 midgut cells which lie more dorsally. The descendants of ABpl/rppppp, as well as mu intR, move into the elongating tail and participate in formation of the rectal and associated intestinal muscles, as well as the ventral tail hypodermis. Expression diminishes during elongation and by hatching is detectable only in the 2 gut cells, M, mu intR, and 10 cells descended from ABpl/rppppp.
Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/
Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/
Inferred expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/
Inferred Expression. EPIC dataset. http://epic.gs.washington.edu/ Large-scale cellular resolution compendium of gene expression dynamics throughout development. This reporter was inferred to be expressing in this cell or one of its embryonic progenitor cells as described below. To generate a compact description of which cells express a particular reporter irrespective of time, the authors defined a metric "peak expression" for each of the 671 terminal ("leaf") cells born during embryogenesis. For each of these cells, the peak expression is the maximal reporter intensity observed in that cell or any of its ancestors; this has the effect of transposing earlier expression forward in time to the terminal set of cells. This metric allows straightforward comparisons of genes' cellular and lineal expression overlap, even when the expression occurs with different timing and despite differences in the precise time point that curation ended in different movies, at the cost of ignoring the temporal dynamics of expression, a topic that requires separate treatment. For simplicity, the authors use the term "expressing cells" to mean the number of leaf cells (of 671) with peak expression greater than background (2000 intensity units) and at least 10% of the maximum expression in that embryo. Quantitative expression data for all cells are located here: ftp://caltech.wormbase.org/pub/wormbase/datasets-published/murray2012/
The C. elegans life stage spanning 620-800min(hatch) after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. A stage after elongation is over. The last stage of embryogenesis. Also called pre-hatched embryo, late embryo or morphogenetic embryo.
The C. elegans life stage spanning 350-620min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. The stage that embryo starts elongation until elongation is over.
The C. elegans life stage spanning 290-350min after first cleavage at 20 Centigrade. Proliferate from 421 cells to 560 cells. The stage when embryo just finished gastrulation and is enclosing.
The C. elegans life stage spanning 100-290min after first cleavage at 20 Centigrade. Proliferate from 28 cells to 421 cells. Referring to the whole period of gastrulation.
The C. elegans life stage spanning 0-350min after first cleavage at 20 Centigrade. Proliferate from 1 cell to 560 cells. From start of first cleavage until cleavage is over.
The C. elegans life stage spanning 520-620min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. The shape of embryo is elongated and tripple fold. A stage between 2-fold embryo and fully-elongated embryo. Also called pretzel embryo or pretzel stage.
The C. elegans life stage spanning 420-460min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. The shape of embryo is elongated and fold back 50%. A stage between comma embryo and 2-fold embryo.
The C. elegans life stage spanning 390-420min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. The shape of embryo looks like a comma. A stage between bean embryo and 1.5-fold embryo.
The C. elegans life stage spanning 460-520min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. The shape of embryo is elongated and double fold. A stage between 1.5-fold embryo and 3-fold embryo.
The C. elegans life stage spanning 350-390min after first cleavage at 20 Centigrade. Cell number remains at ~560 cells, with some new cells generated and some cells go through programmed cell death. Emrbyo elongation started but have not formed comma shape yet. The shape of embryo looks like a lima bean. A stage right before comma embryo. Also called lima embryo or lima bean stage.
The C. elegans life stage spanning 210-350min after first cleavage at 20 Centigrade. Proliferate from 421 cells to 560 cells. The stage before the fast cleavage of cells finishes.