|
|
Expr15649
|
|
|
|
|
Expr15442
|
|
|
|
|
Expr15558
|
|
|
|
|
Expr15567
|
|
|
|
|
Expr15571
|
|
|
|
|
Expr15572
|
|
|
|
|
Expr15573
|
|
|
|
|
Expr15579
|
|
|
|
|
Expr15586
|
|
|
|
|
Expr15651
|
|
|
|
|
Expr15652
|
|
|
|
|
Expr15589
|
|
|
|
|
Expr15591
|
|
|
|
|
Expr15598
|
|
|
|
|
Expr15604
|
|
|
|
|
Expr14590
|
Embryonic expression of exc-7 was first observed at the bean stage. By reverse lineaging with use of SIMI-Biocell software, we confirm the identity of one of the expressing cells at this stage as the excretory canal cell. In L1 animals, broad expression in the head, ventral nerve cord (VNC), and tail was observed. In young adults, expression is notably observed in vulva cells. In the nervous system specifically, expression is observed in many neurons throughout the body, but unlike Drosophila Elav, exc-7::gfp it is not panneuronally expressed. We confirmed previously reported expression in cholinergic VNC MNs, but absence of GABAergic VNC MNs, consistent with previous reports (Fujita et al., 1999; Loria et al., 2003) and consistent with exc-7 functioning in cholinergic, but not GABAergic neurons to control alternative splicing (Norris et al., 2014). exc-7::gfp is also expressed in some non-neuronal cell types, including muscle and hypodermis, but not in the gut. A previous report showed that exc-7 is only transiently and weakly expressed in the excretory cell, which, based on exc-7's excretory mutant phenotype, has puzzled researchers (Fujita et al., 2003). We find that the gfp tagged exc-7 locus is strongly and continuously expressed in the excretory canal cell. |
|
|
|
Expr15608
|
|
|
|
|
Expr15611
|
|
|
The timing expression pattern of coq-8 gene reported herein correlates with the overall Q content in C. elegans. Higher expression of coq-8 gene, and presumably Q biosynthesis activity, correspond with those tissues with particularly active bioenergetics in different development stages during life cycle. Thus coq-8 expression pattern may directly or indirectly reflect bioenergetics and cellular activity in vivo. |
|
Expr3875
|
As adult animals progressed towards the post-fertile period, COQ-8::GFP expression became restricted to nervous system, whilst in other tissues, including muscles, progressively diminished until it completely disappeared. During the adult stage stained neurons could be individually identified. These included at least the ASIL, ASIR, PHAL, PHAR, PVDR and PVDL sensory neurons. The interneurons AVKL, AVKR, PVT, PVQL, PVQR, and motoneurons AS1 to AS8, DA1 to DA9, DD1 to DD6, and VC1 to VC6, were also stained. COQ-8 expression in hypodermis was not evident until worms reached the L2 stage, however not all hypodermal cells showed similar expression levels. Lateral hypodermal syncytium appeared heavily stained whereas seam cells, that form a protruding hypodermal ridge termed alae, did not show significant fluorescence. Neuronal cells stained in L1 remained stained during L2 stage. COQ-8 expression pattern changed in L4 larvae and young adult stages of very active and fertile young individuals. Hypodermis fluorescence decreased abruptly and GFP signal appeared restricted to muscles and nervous system. It worth noting that hypodermal COQ-8::GFP expression was readily observed during moulting period but decreases abruptly in young adults, that no further moults, allowing the detection of COQ-8::GFP fluorescence in smaller cells as coelomocytes, which were not readily visible in earlier larval stages. Coelomocytes are defensive phagocytes that produce reactive oxygen species (ROS) in worms and other invertebrates and a high Q content would be needed to prevent oxidative damage derived from this particular oxygen metabolism. During egg development fluorescence was readily detectable in early pre-morphogenetic stages about 4 to 5 h post-fertilization, becoming higher in both intensity and number of fluorescent cells during later embryogenesis. 4D microscopy revealed some spatial and temporal variability in the initial expression of COQ-8::GFP from embryo to embryo. The beginning of the COQ-8::GFP expression was detected between the 8th and the 10th embryonic mitosis and was triggered by a group of several blastomeres in all the analyzed embryos. These blastomers are committed to differentiate into specific tissues with high energetic requirements, such as neurons and muscles, but also hypodermis and coelomocytes. These tissues also showed fluorescence during later life stages. Fluorescence reached its maximum intensity in L3 stage of development, supporting a genetic basis to previous observations that showed highest Q content in L2 ~ L4 stages. Longitudinal nervous ventral and dorsal cords showed high fluorescence and some muscular innervations were also stained at this stage. Expression of COQ-8::GFP was clearly evident in hypodermis, neurons and cords, and muscle cells. This expression pattern cannot exclude other tissues showing much weaker fluorescence that may not be readily observed. The expression in muscle and neuronal cells was detected during larval development as early as in the first larval stage (L1). At this stage, longitudinal muscles quadrants were GFP-stained tail and pharyngeal ring neural centres displayed significantly higher COQ-8 expression levels than other tissues. The nervous system of L1 wild type larvae is not entirely developed and contains fewer connections between neurons than in older animals, as it is observed by the GFP staining. |
|
|
|
Expr15570
|
|
|
|
|
Expr15644
|
|
|
|
|
Expr14657
|
For sprr-2, we observed expression in around 10 neuron pairs in the head, of which the cellular identity was confirmed for the main salt-sensory ASE neurons as well as the ASI and AWB chemosensory neurons. In addition, sprr-2 expression localized to the SDQ neurons in the midbody and was also evident in 3 tail neurons, one of which corresponds to the DA8 or DA9 motor neuron. |
|
|
|
Expr12716
|
|
|
|
|
Expr12717
|
|
|
At 335 minutes post fertilization. |
|
Expr11224
|
efn-2 expression showed widespread left-right asymmetry inembryos, both in amphid neurons and in other cells. |
|
|
|
Expr15633
|
|
|
|
|
Expr12715
|
|
|
|
|
Expr16049
|
nmgp-1 expresses mostly in sensory neurons and in the egg-laying apparatus of adult hermaphrodites. GFP expression driven by the putative nmgp-1 promoter was detected in several cells, primarily neurons. Within the head, we saw GFP expression in pharyngeal neurons, as many somas and processes within the metacorpus and the posterior bulb ventral ganglia were observed. In addition, some of the processes next to the bulb might correspond to CEP sheath glial cells. In the midbody, we saw labeling of cells within the egg-laying apparatus. Posteriorly, we observed cells in the tail ganglia and possibly phasmid neurons. Neuronal processes along dorsal and ventral cords were also labeled. In addition, to identify specific neurons, we used the NeuroPAL strain (OH15500) developed by Hobert's Lab (Yemini et al., 2021). This strain has a stereotyped fluorescent color map to identify all neurons. We injected it with the same plasmid for GFP expression under the nmgp-1 promoter. The following neurons were identified as expressing GFP: ALA, CEPD, IL1 (head neurons from the nerve ring), the sensory amphid neurons ASK, neurons from the anterior ventral nerve cord (VA6, VB7, DB5, AS5, VD6, DD3, DA4) and posterior ventral cord (VA11, VD11, AS10, DA7, DB7, CB11, VA11), neurons from the preanal ganglion (PVP, PVT, DD6, AS11, VA12, DA8, DA9) dorso-rectal ganglion (DVB, DVA, DVC) and lumbar ganglion (PVQ, PHC). The neurons identified include sensory neurons (amphid and mechanosensory), motor neurons and interneurons. |
|
|
|
Expr14007
|
ASI, some worms show dim expression in a couple more head neuron pairs, DA8, DA9, VA11 |
|
|
|
Expr15314
|
|
|